Bounded variability of metric temporal logic

Open Access
Article
  • 219 Downloads

Abstract

Deciding validity of Metric Temporal Logic (MTL) formulas is generally very complex and even undecidable over dense time domains; bounded variability is one of the several restrictions that have been proposed to bring decidability back. A temporal model has bounded variability if no more than v events occur over any time interval of length V, for constant parameters v and V. Previous work has shown that MTL validity over models with bounded variability is less complex—and often decidable—than MTL validity over unconstrained models. This paper studies the related problem of deciding whether an MTL formula has intrinsic bounded variability, that is whether it is satisfied only by models with bounded variability. The results of the paper are mainly negative: over dense time domains, the problem is mostly undecidable (even if with an undecidability degree that is typically lower than deciding validity); over discrete time domains, it is decidable with the same complexity as deciding validity. As a partial complement to these negative results, the paper also identifies MTL fragments where deciding bounded variability is simpler than validity, which may provide for a reduction in complexity in some practical cases.

Keywords

Metric temporal logic Bounded variability Decidability and complexity 

Mathematics Subject Classification (2010)

03B70 03B44 

References

  1. 1.
    Abadi, M., Lamport, L.: An old-fashioned recipe for real-time. ACM Trans. Program. Lang. Syst. 16(5), 1543–1571 (1994)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comp. 104(1), 35–77 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for linear temporal logic. Logical Methods in Computer Science 5(1) (2009)Google Scholar
  6. 6.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The Cost of Punctuality. In: ACM/IEEE Symposium on Logic in Computer Science, pp 109–120 (2007)Google Scholar
  7. 7.
    Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of interval temporal logic: Sharpening the undecidability border. In: International Symposium on Temporal Representation and Reasoning, pp 131–138 (2011)Google Scholar
  8. 8.
    Bresolin, D., Della monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propositional neighborhood logics on natural numbers. Softw. Syst. Model. 12(2), 245–264 (2013)CrossRefMATHGoogle Scholar
  9. 9.
    Bresolin, D., Monica, D. D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal logics over strongly discrete linear orders: Expressiveness and complexity. Theor. Comput. Sci. 560, 269–291 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal decision procedures for MPNL over finite structures, the natural numbers, and the integers. Theor. Comput. Sci. 493, 98–115 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and Undecidability Results for Duration Calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 93, 10th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 665, pp 58–68. Springer (1993)Google Scholar
  12. 12.
    Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Inf. Comput. 174(1), 84–103 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. STTT 9(1), 1–4 (2007)CrossRefGoogle Scholar
  14. 14.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. STTT 9(1), 1–4 (2007)CrossRefGoogle Scholar
  15. 15.
    Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer Science, vol. B, pp 996–1072. Elsevier Science (1990)Google Scholar
  16. 16.
    Fränzle, M.: Model-checking dense-time duration calculus. Formal Asp. Comput. 16(2), 121–139 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing. Monographs in Theoretical Computer Science. An EATCS series Springer (2012)Google Scholar
  18. 18.
    Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. In: FORMATS, LNCS. Extended version in [19], vol. 5215, pp 109–123. Springer (2008)Google Scholar
  19. 19.
    Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. Tech. Rep. 2008.10, Dipartimento di Elettronica e Informazione, Politecnico di Milano. Available at http://bugcounting.net/publications.html#MTLwBoundedVar-TR08 (2008)
  20. 20.
    Furia, C.A., Rossi, M.: A theory of sampling for continuous-time metric temporal logic. ACM Transactions on Computational Logic 12(1), 1–40 (2010). Article 8MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Furia, C.A., Spoletini, P.: On Relaxing Metric Information in Linear Temporal Logic. In: International Symposium on Temporal Representation and Reasoning, pp 72–79. IEEE (2011)Google Scholar
  22. 22.
    Furia, C.A., Spoletini, P.: Automata-Based Verification of Linear Temporal Logic Models with Bounded Variability. In: International Symposium on Temporal Representation and Reasoning, pp 89–96. IEEE (2012)Google Scholar
  23. 23.
    Furia, C.A., Spoletini, P.: Bounded Variability of Metric Temporal Logic. In: Cesta, A., Combi, C., Laroussinie, F. (eds.) Proceedings of the 21st International Symposium on Temporal Representation and Reasoning (TIME’14), pp 155–163. IEEE Computer Society (2014)Google Scholar
  24. 24.
    Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic (vol. 1): mathematical foundations and computational aspects, Oxford Logic Guides, vol. 28. Oxford University Press (1994)Google Scholar
  25. 25.
    Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Basis of Fairness. In: Conference Record of the 7Th Annual ACM Symposium on Principles of Programming Languages (POPL’80), pp 163–173 (1980)Google Scholar
  26. 26.
    Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam. Inf. 62(1), 1–28 (2004)MathSciNetMATHGoogle Scholar
  27. 27.
    Hirshfeld, Y., Rabinovich, A.: Continuous time temporal logic with counting. Inf. Comput. 214, 1–9 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004)MathSciNetMATHGoogle Scholar
  29. 29.
    Hunter, P., Ouaknine, J., Worrell, J.: Expressive Completeness for Metric Temporal Logic. In: LICS, pp 349–357. IEEE (2013)Google Scholar
  30. 30.
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. Ph.D. Thesis. University of California, Los Angeles (1968)Google Scholar
  31. 31.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  32. 32.
    Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3(2), 125–143 (1977)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE and below. Inf. Comput. 205(1), 99–123 (2007)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, present, future. In: Petterson, P., Yi, W. (eds.) Proceedings of the 3rd International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’05), Lecture Notes in Computer Science, vol. 3829, pp 2–16. Springer-Verlag (2005)Google Scholar
  35. 35.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin, E., Bouyer, P. (eds.) Proceedings of the 4th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’06), Lecture Notes in Computer Science, vol. 4202, pp 274–289. Springer-Verlag (2006)Google Scholar
  36. 36.
    Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete, Timed and Continuous Behaviors. In: Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85Th Birthday, Lecture Notes in Computer Science, vol. 4800, pp 475–505. Springer (2008)Google Scholar
  37. 37.
    Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties. In: Proceedings of the 9Th Annual ACM Symposium on Principles of Distributed Computing, pp 377–410. ACM (1990)Google Scholar
  38. 38.
    Minsky, M.L.: Computation: Finite and infinite machines prentice hall (1967)Google Scholar
  39. 39.
    Montanari, A., Pazzaglia, M., Sala, P.: Metric Propositional Neighborhood Logic with an Equivalence Relation. In: 21St International Symposium on Temporal Representation and Reasoning, (TIME), pp 49–58. IEEE Computer Society (2014)Google Scholar
  40. 40.
    Montanari, A., Puppis, G., Sala, P.: Decidability of the Interval Temporal Logic \(\mathsf {A}\bar {\mathsf {A}}\mathsf {B}\bar {\mathsf {B}}\) over the Rationals. In: Mathematical Foundations of Computer Science 2014 - 39Th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, pp 451–463 (2014)Google Scholar
  41. 41.
    Montanari, A., Sala, P.: An Optimal Tableau System for the Logic of Temporal Neighborhood over the Reals. In: 19Th International Symposium on Temporal Representation and Reasoning, TIME 2012, Leicester, United Kingdom, September 12-14, 2012, pp 39–46 (2012)Google Scholar
  42. 42.
    Nickovic, D., Piterman, N.: From MTL to Deterministic Timed Automata. In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed Systems – 8th International Conference, FORMATS 2010, Lecture Notes in Computer Science, vol. 6246, pp 152–167. Springer (2010)Google Scholar
  43. 43.
    Ouaknine, J., Rabinovich, A., Worrell, J.: Time-Bounded Verification. In: Bravetti, M. , Zavattaro, G. (eds.) CONCUR 2009 – Concurrency Theory, 20th International Conference, Lecture Notes in Computer Science, vol. 5710, pp 496–510. Springer (2009)Google Scholar
  44. 44.
    Ouaknine, J., Worrell, J.: On Metric Temporal Logic and Faulty Turing Machines. In: FoSSaCS, LNCS, vol. 3921, pp 217–230. Springer (2006)Google Scholar
  45. 45.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)Google Scholar
  46. 46.
    Ouaknine, J., Worrell, J.: Some Recent Results in Metric Temporal Logic. In: FORMATS, LNCS, vol. 5215, pp 1–13. Springer (2008)Google Scholar
  47. 47.
    Ouaknine, J., Worrell, J.: Towards a Theory of Time-Bounded Verification. In: Abramsky, S., Gavoille, C., Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Lecture Notes in Computer Science, vol. 6199, pp 22–37. Springer (2010)Google Scholar
  48. 48.
    Papadimitriou, C.: Computational complexity Addison-Wesley (1994)Google Scholar
  49. 49.
    Perrin, D., Pin, J.E.́: Infinite Words, Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar
  50. 50.
    Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18Th Annual Symposium on Foundations of Computer Science, SFCS ’77, pp 46–57. IEEE Computer Society (1977)Google Scholar
  51. 51.
    Rabinovich, A.: Complexity of Metric Temporal Logics with Counting and the Pnueli Modalities. In: FORMATS, Lecture Notes in Computer Science, vol. 5215, pp 93–108. Springer (2008)Google Scholar
  52. 52.
    Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modalities. Theor. Comput. Sci. 411(22-24), 2331–2342 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Rabinovich, A.M.: Expressive completeness of Duration Calculus. Inf. Comput. 156(1-2), 320–344 (2000)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl. Logic 161(8), 1063–1096 (2010)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Reynolds, M.: Metric temporal reasoning with less than two clocks. Journal of Applied Non-Classical Logics 20(4), 437–455 (2010)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Reynolds, M.: A New Metric Temporal Logic for Hybrid Systems. In: 20Th International Symposium on Temporal Representation and Reasoning (TIME), pp 73–80. IEEE Computer Society (2013)Google Scholar
  57. 57.
    Rogers, Jr., H.: Theory of recursive functions and effective computability MIT press (1987)Google Scholar
  58. 58.
    Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. ACM 10(2) (1963)Google Scholar
  59. 59.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Logics for Concurrency – Structure versus Automata (8Th Banff Higher Order Workshop), Lecture Notes in Computer Science, vol. 1043, pp 238–266. Springer (1995)Google Scholar
  61. 61.
    Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS, pp 332–344. IEEE (1986)Google Scholar
  62. 62.
    Wilke, T.: Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata. In: FTRTFT, LNCS, vol. 863, pp 694–715. Springer (1994)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.Department of Software Engineering and Game DevelopmentKennesaw State UniversityKennesawUSA

Personalised recommendations