Tableau reasoning for description logics and its extension to probabilities

  • Riccardo Zese
  • Elena Bellodi
  • Fabrizio Riguzzi
  • Giuseppe Cota
  • Evelina Lamma
Article

Abstract

The increasing popularity of the Semantic Web drove to a widespread adoption of Description Logics (DLs) for modeling real world domains. To help the diffusion of DLs, a large number of reasoning algorithms have been developed. Usually these algorithms are implemented in procedural languages such as Java or C++. Most of the reasoners exploit the tableau algorithm which features non-determinism, that is not easily handled by those languages. Prolog directly manages non-determinism, thus is a good candidate for dealing with the tableau’s non-deterministic expansion rules. We present TRILL, for “Tableau Reasoner for descrIption Logics in proLog”, that implements a tableau algorithm and is able to return explanations for queries and their corresponding probability, and TRILLP, for “TRILL powered by Pinpointing formulas”, which is able to compute a Boolean formula representing the set of explanations for a query. Reasoning on real world domains also requires the capability of managing probabilistic and uncertain information. We show how TRILL and TRILLP can be used to compute the probability of queries to knowledge bases following DISPONTE semantics. Experiments comparing these with other systems show the feasibility of the approach.

Keywords

Description logics Tableau Prolog Semantic web 

Mathematics Subject Classifications (2010)

68T30 68T37 68T27 68N17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  2. 2.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of Knowledge Representation, chap. 3, pp. 135–179. Elsevier (2008)Google Scholar
  3. 3.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reas. 45(2), 91–129 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput. 20(1), 5–34 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge - a Logical Approach to Probabilities. MIT Press, Cambridge (1990)Google Scholar
  6. 6.
    Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. J. Autom. Reas. 15(3), 339–358 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for probabilistic ontologies. In: Bobillo, F., et al. (eds.) URSW 2011, CEUR Workshop Proceedings, vol. 778. Sun SITE Central Europe (2011)Google Scholar
  8. 8.
    Bellodi, E., Riguzzi, F.: Learning the structure of probabilistic logic programs. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011, LNCS, vol. 7207, pp. 61–75. Springer (2012). doi:10.1007/978-3-642-31951-8_10
  9. 9.
    Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams for probabilistic logic programs. Intel. Data Anal. 17(2), 343–363 (2013)Google Scholar
  10. 10.
    Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J., Janssens, G., Raedt, L.D.: Problog technology for inference in a probabilistic first order logic. In: ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 719–724. IOS Press (2010)Google Scholar
  11. 11.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic description logic programs for the semantic web. In: Journal on Data Semantics XII, pp. 95–130. Springer (2009)Google Scholar
  12. 12.
    Carvalho, R.N., Laskey, K.B., Costa, P.C.G.: PR-OWL 2.0 - bridging the gap to OWL semantics. In: Bobillo, F., et al. (eds.) URSW 2010, CEUR Workshop Proceedings, vol. 654. Sun SITE Central Europe (2010)Google Scholar
  13. 13.
    Ceylan, İ.İ., Mendez, J., Peṅaloza, R.: The bayesian ontology reasoner is born!. In: Dumontier, M., Glimm, B., Gonċalves, R.S., Horridge, M., Jimėnez-Ruiz, E., Matentzoglu, N., Parsia, B., Stamou, G.B., Stoilos, G. (eds.) Informal Proceedings of the 4th International Workshop on OWL Reasoner Evaluation (ORE-2015) co-located with the 28th International Workshop on Description Logics (DL 2015), CEUR Workshop Proceedings, vol. 1387, pp. 8–14. CEUR-WS.org (2015)Google Scholar
  14. 14.
    Ceylan, İ.İ., Peṅaloza, R.: Bayesian description logics. In: Bienvenu, M., Ortiz, M., Rosati, R., Simkus, M. (eds.) Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria, July 17-20, 2014., CEUR Workshop Proceedings, vol. 1193, pp. 447–458. CEUR-WS.org (2014)Google Scholar
  15. 15.
    Ceylan, İ.İ., Peṅaloza, R.: Probabilistic query answering in the bayesian description logic BEl. In: Beierle, C., Dekhtyar, A. (eds.) Proceedings of Scalable Uncertainty Management - 9th International Conference, SUM 2015, Lecture Notes in Computer Science, vol. 9310, pp. 21–35. Springer (2015)Google Scholar
  16. 16.
    Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. TPLP 8(1), 121–128 (2008)MATHGoogle Scholar
  17. 17.
    da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A bayesian ontology language for the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) Uncertainty Reasoning for the Semantic Web I, ISWC International Workshops, URSW 2005-2007, Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol. 5327, pp. 88–107. Springer (2008)Google Scholar
  18. 18.
    d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) Scalable Uncertainty Management, Second International Conference, SUM 2008, Naples, Italy, October 1-3, 2008. Proceedings, Lecture Notes in Computer Science, vol. 5291, pp. 146–159. Springer (2008)Google Scholar
  19. 19.
    Demir, E., Cary, M.P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., Wu, G., D’Eustachio, P., Schaefer, C., Luciano, J., et al.: The biopax community standard for pathway data sharing. Nat. Biotechnol. 28(9), 935–942 (2010)CrossRefGoogle Scholar
  20. 20.
    Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: 37th Hawaii International Conference on System Sciences (HICSS-37 2004), CD-ROM / Abstracts Proceedings, 5-8 January 2004. IEEE Computer Society, USA (2004)Google Scholar
  21. 21.
    Eėn, N., Sȯrensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2003)Google Scholar
  22. 22.
    Faizi, I.: A Description Logic Prover in Prolog, Bachelor’s thesis. Informatics Mathematical Modelling, Technical University of Denmark (2011)Google Scholar
  23. 23.
    Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R., Cota, G.: An abductive framework for datalog ± ontologies. In: Vos, M.D., Eiter, T., Lierler, Y., Toni, F. (eds.) Proceedings of the Technical Communications of the 31st International Conference on Logic Programming (ICLP 2015), Cork, Ireland, August 31 - September 4, 2015., CEUR Workshop Proceedings, vol. 1433. CEUR-WS.org (2015)Google Scholar
  24. 24.
    Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R., Cota, G.: Abductive logic programming for datalog +/- ontologies. In: Ancona, D., Maratea, M., Mascardi, V. (eds.) Proceedings of the 30th Italian Conference on Computational Logic, Genova, Italy, July 1-3, 2015., CEUR Workshop Proceedings, vol. 1459, pp. 128–143. CEUR-WS.org (2015)Google Scholar
  25. 25.
    Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings, Lecture Notes in Computer Science, vol. 2424, pp. 86–97. Springer (2002)Google Scholar
  26. 26.
    Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in probabilistic datalog+/- ontologies. In: Rudolph, S., Gutierrez, C. (eds.) Web Reasoning and Rule Systems - 5th International Conference, RR 2011, Galway, Ireland, August 29-30, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6902, pp. 77–92. Springer (2011)Google Scholar
  27. 27.
    Halaschek-Wiener, C., Kalyanpur, A., Parsia, B.: Extending Tableau Tracing for ABox Updates. University of Maryland, Tech. rep. (2006)Google Scholar
  28. 28.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Heinsohn, J.: Probabilistic description logics. In: de Mántaras, R.L., Poole, D. (eds.) Conference on Uncertainty in Artificial Intelligence, pp. 311–318, Morgan Kaufmann (1994)Google Scholar
  30. 30.
    Herchenröder, T.: Lightweight Semantic Web Oriented Reasoning in Prolog: Tableaux Inference for Description Logics. Master’s thesis, School of Informatics, University of Edinburgh (2006)Google Scholar
  31. 31.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC Press (2009)Google Scholar
  32. 32.
    Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the framework of resolution. Inf. Comput. 206(5), 579–601 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Jaeger, M.: Probabilistic reasoning in terminological logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR’94), pp. 305–316. Morgan Kaufmann, Bonn (1994)CrossRefGoogle Scholar
  34. 34.
    Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data with OWL QL. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) The Semantic Web - ISWC 2012 - 11th International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part I, Lecture Notes in Computer Science (LNCS), vol. 7649, pp. 182–197. Springer, Berlin (2012)Google Scholar
  35. 35.
    Kalyanpur, A.: Debugging and Repair of OWL Ontologies. The Graduate School of the University of Maryland, Ph.D. thesis (2006)Google Scholar
  36. 36.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E., et al.: Finding all justifications of OWL DL entailments. In: Aberer, K. (ed.) ISWC/ASWC 2007, LNCS, vol. 4825, pp. 267–280. Springer (2007)Google Scholar
  37. 37.
    Klinov, P.: Pronto: A non-monotonic probabilistic description logic reasoner. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) The Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, Lecture Notes in Computer Science, vol. 5021, pp. 822–826. Springer (2008)Google Scholar
  38. 38.
    Klinov, P., Parsia, B.: Optimization and evaluation of reasoning in probabilistic description logic: Towards a systematic approach. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K. (eds.) The Semantic Web - ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings, Lecture Notes in Computer Science, vol. 5318, pp. 213–228. Springer (2008)Google Scholar
  39. 39.
    Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: A tractable probablistic description logic. In: Kuipers, B., Webber, B.L. (eds.) Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island, pp. 390–397. AAAI Press / The MIT Press (1997)Google Scholar
  40. 40.
    Lager, T., Wielemaker, J.: Pengines: Web logic programming made easy. TPLP 14(4–5), 539–552 (2014)MATHGoogle Scholar
  41. 41.
    Laskey, K.B., da Costa, P.C.G.: Of starships and klingons: Bayesian logic for the 23rd century. In: UAI ’05, Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 26-29, 2005, pp. 346–353. AUAI Press (2005)Google Scholar
  42. 42.
    Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in prolog: The dlog system. TPLP 9(3), 343–414 (2009)MathSciNetMATHGoogle Scholar
  43. 43.
    Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Int. 34(1–3), 35–88 (2002)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Int. 172(6–7), 852–883 (2008)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Luna, J.E.O., Revoredo, K., Cozman, F.G.: Learning probabilistic Description Logics: A framework and algorithms. In: Batyrshin, I.Z., Sidorov, G. (eds.) Advances in Artificial Intelligence - 10th Mexican International Conference on Artificial Intelligence, MICAI 2011, Puebla, Mexico, November 26 - December 4, 2011, Proceedings, Part I, Lecture Notes in Computer Science, vol. 7094, pp. 28–39. Springer, Berlin (2011)Google Scholar
  46. 46.
    Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010, pp. 393–403. AAAI Press, Menlo Park (2010)Google Scholar
  47. 47.
    Meissner, A.: An automated deduction system for description logic with alcn language. Studia z Automatyki i Informatyki 28–29, 91–110 (2004)Google Scholar
  48. 48.
    Nagypȧl, G., Deswarte, R., Oosthoek, J.: Applying the semantic web: The VICODI experience in creating visual contextualization for history. Literary Linguis. Comput. 20(3), 327–349 (2005)CrossRefGoogle Scholar
  49. 49.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Patel-Schneider, PF., Horrocks, I., Bechhofer, S.: Tutorial on OWL (2003)Google Scholar
  51. 51.
    Poole, D.: The Independent Choice Logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Poole, D.: Abducing through negation as failure: stable models within the independent choice logic. J. Log. Program 44(1–3), 5–35 (2000)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: An ASP-based system for enterprise ontologies. J. Log. Comput. 19 (4), 643–670 (2009)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic ontologies. In: Bobillo, F., et al. (eds.) URSW 2012, CEUR Workshop Proceedings, vol. 900, pp. 3–14. Sun SITE Central Europe (2012)Google Scholar
  56. 56.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: BUNDLE: A reasoner for probabilistic ontologies. In: Faber, W., Lembo, D. (eds.) Web Reasoning and Rule Systems - 7th International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7994, pp. 183–197. Springer (2013)Google Scholar
  57. 57.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Parameter learning for probabilistic ontologies. In: Faber, W., Lembo, D. (eds.) Web Reasoning and Rule Systems - 7th International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7994, pp. 265–270. Springer (2013)Google Scholar
  58. 58.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semantic Web - Interoperab. Usabil. Appl. 6 (5), 447–501 (2015). doi:10.3233/SW-140154 MATHGoogle Scholar
  59. 59.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp. 4310–4316. AAAI Press (2015)Google Scholar
  60. 60.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Learning probabilistic description logics. In: URSW III, LNCS, vol. 8816, pp. 63–78. Springer (2014)Google Scholar
  61. 61.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: ICLP 1995, pp. 715–729. MIT Press (1995)Google Scholar
  62. 62.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003, pp. 355–362. Morgan Kaufmann (2003)Google Scholar
  63. 63.
    Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  64. 64.
    Vassiliadis, V., Wielemaker, J., Mungall, C.: Processing OWL2 ontologies using thea: An application of logic programming. In: OWLED 2009, CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversity of FerraraFerraraItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversity of FerraraFerraraItaly

Personalised recommendations