Logic of temporal attribute implications

Article

Abstract

We study logic for reasoning with if-then formulas describing dependencies between attributes of objects which are observed in consecutive points in time. We introduce semantic entailment of the formulas, show its fixed-point characterization, investigate closure properties of model classes, present an axiomatization and prove its completeness, and investigate alternative axiomatizations and normalized proofs. We investigate decidability and complexity issues of the logic and prove that the entailment problem is NP-hard and belongs to EXPSPACE. We show that by restricting to predictive formulas, the entailment problem is decidable in pseudo-linear time.

Keywords

Attribute implication Complete axiomatization Entailment problem Fixed point Functional dependency Temporal semantics 

Mathematics Subject Classification (2010)

68T27 68T30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (New York, NY, USA), SIGMOD ’93, ACM, pp. 207–216 (1993)Google Scholar
  2. 2.
    Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: Proceedings of the 2000 ACM Symposium on Applied Computing (New York, NY, USA), SAC ’00, vol. 1, pp. 294–300. ACM (2000)Google Scholar
  3. 3.
    Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J. L., Freeman, H. (eds.) Information Processing 74: Proceedings of IFIP Congress (Amsterdam), pp.580–583, North Holland (1974)Google Scholar
  4. 4.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of clausal fragments of LTL. arXiv:1306.5088 (2013)
  5. 5.
    Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1–2), 129–149 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4, 30–59 (1979)CrossRefGoogle Scholar
  7. 7.
    Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer (2000)Google Scholar
  8. 8.
    Biedermann, K.: A Foundation of the Theory of Trilattices. Dissertation, TU Darmstadt, Aachen (1998)Google Scholar
  9. 9.
    Birkhoff, G.: Lattice theory. American Mathematical Society (1940)Google Scholar
  10. 10.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, Secaucus, NJ, USA (2002)Google Scholar
  11. 11.
    Chomicki, J., Imieliński, T.: Temporal deductive databases and infinite objects. In: Proceedings of the 7Th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (New York, NY, USA), PODS ’88, ACM, pp. 61–73 (1988)Google Scholar
  12. 12.
    Chomicki, J., Imieliński, T.: Relational specifications of infinite query answers. In: Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data (New York, NY, USA), SIGMOD ’89, ACM, pp. 174–183 (1989)Google Scholar
  13. 13.
    Chomicki, J., Imieliński, T.: Finite representation of infinite query answers. ACM Trans. Database Syst. 18(2), 181–223 (1993)CrossRefGoogle Scholar
  14. 14.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387 (1970)CrossRefMATHGoogle Scholar
  15. 15.
    Combi, C., Sala, P.: Interval-based temporal functional dependencies: specification and verification. Ann. Math. Artif. Intell. 71(1–3), 85–130 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cordero, P., Mora, Á., Pérez de Guzmán, I., Enciso, M.: Non-deterministic ideal operators: an adequate tool for formalization in data bases. Discret. Appl. Math. 156(6), 911–923 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cresswell, S., Coddington, A.M.: Compilation of LTL goal formulas into PDDL. In: López de Mántaras, R., Saitta, L. (eds.) Proceedings of the 16Th Eureopean Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pp. 985–986. IOS Press (2004)Google Scholar
  18. 18.
    Date, C.J., Darwen, H.: Relational Database Writings 1989–1991. Ch. The Role of Functional Dependence in Query Decomposition, pp. 133–154. Addison-Wesley Publishing Co. Inc. (1992)Google Scholar
  19. 19.
    Date, C.J., Darwen, H., Lorentzos, N.A.: Time and Relational Theory: Temporal Databases in the Relational Model and SQL. Morgan Kaufmann (2014)Google Scholar
  20. 20.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)Google Scholar
  21. 21.
    De Cat, B., Bruynooghe, M.: Detection and exploitation of functional dependencies for model generation. Theory Pract. Logic Program. 13(4–5), 471–485 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dieng, C.T., Jen, T.-Y., Laurent, D., Spyratos, N.: Mining frequent conjunctive queries using functional and inclusion dependencies. VLDB J. 22(2), 125–150 (2013)CrossRefGoogle Scholar
  23. 23.
    Fagin, R.: Functional dependencies in a relational database and propositional logic. IBM J. Res. Dev. 21(6), 534–544 (1977)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of inconsistencies in distributed data. IEEE Trans. Knowl. Data Eng. 26(6), 1367–1383 (2014)CrossRefGoogle Scholar
  25. 25.
    Feng, L., Dillon, T., Liu, J.: Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meterological data. Data Knowl. Eng. 37(1), 85–115 (2001)CrossRefMATHGoogle Scholar
  26. 26.
    Feng, L., Yu, J. X., Lu, H., Han, J.: A template model for multidimensional inter-transactional association rules. VLDB J. 11(2), 153–175 (2002)CrossRefGoogle Scholar
  27. 27.
    Ferrarotti, F., Hartmann, S., Link, S.: Reasoning about functional and full hierarchical dependencies over partial relations. Inform. Sci. 235, 150–173 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Gaintzarain J., Lucio, P.: Logical foundations for more expressive declarative temporal logic programming languages. ACM Trans. Comput. Logic 14(4), 28:1–28:41 (2013)Google Scholar
  29. 29.
    Ganter, B.: Two basic algorithms in concept analysis. In: Proceedings of the 8Th International Conference on Formal Concept Analysis (Berlin, Heidelberg), ICFCA’10, pp. 312–340. Springer (2010)Google Scholar
  30. 30.
    Ganter B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) Conceptual Structures at Work, Lecture Notes in Computer Science, vol. 3127, pp. 186–195. Springer, Berlin Heidelberg (2004)Google Scholar
  31. 31.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer, New York (1997)Google Scholar
  32. 32.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of np-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  33. 33.
    Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., Wilkins, D.: Pddl—the planning domain definition language, version 1.2. technical report cvc tr-98-003/dcs tr-1165 (oct.). Tech. report, Yale Center for Computational Vision and Control, Yale University (1998)Google Scholar
  34. 34.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)Google Scholar
  35. 35.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)CrossRefMATHGoogle Scholar
  36. 36.
    Huang, Y.-P., Kao, L.-J., Sandnes, F.-E.: Efficient mining of salinity and temperature association rules from argo data. Expert Syst. Appl. 35(1–2), 59–68 (2008)CrossRefGoogle Scholar
  37. 37.
    Ibaraki, T., Kogan, A., Makino, K.: On functional dependencies in q-horn theories. Artif. Intell. 131(1–2), 171–187 (2001)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin, Heidelberg (2004)CrossRefMATHGoogle Scholar
  39. 39.
    Lee, A.J.T., Wang, C.-S., Weng, W.-Y., Chen, Y.-A., Wu, H.-W.: An efficient algorithm for mining closed inter-transaction itemsets. Data Knowl. Eng. 66(1), 68–91 (2008)CrossRefGoogle Scholar
  40. 40.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) Conceptual Structures: Applications, Implementation and Theory, Lecture Notes in Computer Science, vol. 954, pp. 32–43. Springer, Berlin, Heidelberg (1995)Google Scholar
  41. 41.
    Li, J., Liu, J., Toivonen, H., Yong, J.: Effective pruning for the discovery of conditional functional dependencies. Comput. J. 56(3), 378–392 (2013)CrossRefGoogle Scholar
  42. 42.
    Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data Knowl. Eng. 44(2), 193–218 (2003)CrossRefGoogle Scholar
  43. 43.
    Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32(3), 186–195 (1966)MathSciNetMATHGoogle Scholar
  44. 44.
    Liu, J., Ye, F., Li, J., Wang, J.: On discovery of functional dependencies from data. Data Knowl. Eng. 86, 146–159 (2013)CrossRefGoogle Scholar
  45. 45.
    Lloyd, J.W.: Foundations of Logic Programming. Springer New York, Inc., New York (1984)CrossRefMATHGoogle Scholar
  46. 46.
    Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18 (4), 423–454 (2000)CrossRefGoogle Scholar
  47. 47.
    Ma, S., Fan, W., Bravo, L.: Extending inclusion dependencies with conditions. Theor. Comput. Sci. 515, 64–95 (2014)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Maier, D.: Theory of Relational Databases. Computer Science Pr, Rockville (1983)MATHGoogle Scholar
  49. 49.
    McCarthy, J., Hayes, P.J.: Readings in Nonmonotonic Reasoning, pp. 26–45. Morgan Kaufmann Publishers Inc., San Francisco (1987)Google Scholar
  50. 50.
    Mostowski, A.: On a generalization of quantifiers. Fundam. Math. 44(1), 12–36 (1957)MathSciNetMATHGoogle Scholar
  51. 51.
    Oliveira, J.N.: A relation-algebraic approach to the “Hoare logic” of functional dependencies. Journal of Logical and Algebraic Methods in Programming 83(2), 249–262 (2014)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Co. Inc. (1994)Google Scholar
  53. 53.
    Pinto, J., Reiter, R.: Reasoning about time in the situation calculus. Ann. Math. Artif. Intell. 14(2), 251–268 (1995)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Rainsford, C.P., Roddick, J.F.: Adding temporal semantics to association rules. In: żytkow, J.M., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, vol. 1704, pp. 504–509. Springer, Berlin, Heidelberg (1999)Google Scholar
  55. 55.
    R. Reiter: Artificial intelligence and mathematical theory of computation, pp 359–380. Academic Press Professional, Inc., San Diego (1991)Google Scholar
  56. 56.
    Reynolds, M.: The complexity of decision problems for linear temporal logics. Journal of Studies in Logic 3(1), 19–50 (2010)MathSciNetGoogle Scholar
  57. 57.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Song, S., Chen, L., Cheng, H.: Efficient determination of distance thresholds for differential dependencies. IEEE Trans. Knowl. Data Eng. 26(9), 2179–2192 (2014)CrossRefGoogle Scholar
  59. 59.
    Szabo, G.I., Benczur, A.: Functional dependencies on symbol strings generated by extended context free languages. In: Morzy, T., Harder, T., Wrembel, R. (eds.) Advances in Databases and Information Systems, Advances in Intelligent Systems and Computing, vol. 186, pp. 253–264 (2013)Google Scholar
  60. 60.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Triska, J., Vychodil, V.: Towards Armstrong-style inference system for attribute implications with temporal semantics. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) Modeling Decisions for Artificial Intelligence – 11Th International Conference, MDAI 2014, Tokyo, Japan, October 29-31, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8825, pp. 84–95. Springer (2014)Google Scholar
  62. 62.
    Triska, J., Vychodil, V.: Minimal bases of temporal attribute implications. in preparation (2016)Google Scholar
  63. 63.
    Tung, A.K.H., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: mining inter-transaction association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA), KDD ’99, ACM, pp. 297–301 (1999)Google Scholar
  64. 64.
    Vincent, M.W., Liu, J., Mohania, M.K.: The implication problem for ‘closest node’ functional dependencies in complete XML documents. J. Comput. Syst. Sci. 78 (4), 1045–1098 (2012)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Wellman, M.P.: Exploiting functional dependencies in qualitative probabilistic reasoning. arXiv:1304.1081 (2013)
  66. 66.
    Zaki, M.J.: Mining non-redundant association rules. Data Min. Knowl. Disc. 9, 223–248 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department Computer SciencePalacky University OlomoucOlomoucCzech Republic

Personalised recommendations