Advertisement

Annals of Mathematics and Artificial Intelligence

, Volume 78, Issue 1, pp 73–100 | Cite as

Distributed coordination of emergency medical service for angioplasty patients

  • Marin Lujak
  • Holger Billhardt
  • Sascha Ossowski
Article

Abstract

In this paper we study the coordination of Emergency Medical Service (EMS) for patients with acute myocardial infarction with ST-segment elevation (STEMI). This is a health problem with high associated mortality. A “golden standard” treatment for STEMI is angioplasty, which requires a catheterization lab and a highly qualified cardiology team. It should be performed as soon as possible since the delay to treatment worsens the patient’s prognosis. The decrease of the delay is achieved by coordination of EMS, which is especially important in the case of multiple simultaneous patients. Nowadays, this process is based on the First-Come-First-Served (FCFS) principle and it heavily depends on human control and phone communication with high proneness to human error and delays. The objective is, therefore, to automate the EMS coordination while minimizing the time from symptom onset to reperfusion and thus to lower the mortality and morbidity resulting from this disease. In this paper, we present a multi-agent decision-support system for the distributed coordination of EMS focusing on urgent out-of-hospital STEMI patients awaiting angioplasty. The system is also applicable to emergency patients of any pathology needing pre-hospital acute medical care and urgent hospital treatment. The assignment of patients to ambulances and angioplasty-enabled hospitals with cardiology teams is performed via a three-level optimization model. At each level, we find a globally efficient solution by a modification of the distributed relaxation method for the assignment problem called the auction algorithm. The efficiency of the proposed model is demonstrated by simulation experiments.

Keywords

EMS coordination Ambulance coordination Angioplasty PCI Distributed optimization Auction algorithm Emergency medical assistance 

Mathematics Subject Classification (2010)

90B50 90C27 68W15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandara, D., Mayorga, M. E., McLay, L. A.: Optimal dispatching strategies for emergency vehicles to increase patient survivability. Int. J. Oper. Res. 15(2), 195–214 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Behzadia, N., Salinero-Fortb, M. A., de Blasc, A., Taboadaa, M., Pérez de Islad, L., López-Sendóne, J. L.: Prehospital thrombolysis: Two years experience of the community of madrid emergency services (summa 112). Rev Esp Cardiol (Engl Ed). 65(10), 960–961 (2012)CrossRefGoogle Scholar
  3. 3.
    Bertsekas, D. P: Auction algorithms for network flow problems: A tutorial introduction. Comput. Optim. Appl. 1(1), 7–66 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertsekas, D. P.: Auction algorithms. In: Encyclopedia of Optimization, pp. 128–132 (2009)Google Scholar
  5. 5.
    Bertsekas, D.P.: The auction algorithm: A distributed relaxation method for the assignment problem. Ann. Oper. Res 14(1), 105–123 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Billhardt, H., Fernandez, A., Lemus, L., Lujak, M., Osman, N., Ossowski, S., Sierra, C.: Dynamic coordination in fleet management systems: Toward smart cyber fleets. Intel Syst IEEE 29(3), 70–76 (2014)CrossRefGoogle Scholar
  7. 7.
    Billhardt, H., Lujak, M., Ossowski, S., Bruns, R., Dunkel, J.: Intelligent event processing for emergency medical assistance. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 200–206. ACM (2014)Google Scholar
  8. 8.
    Billhardt, H., Lujak, M., Sánchez-Brunete, V., Fernández, A., Ossowski, S.: Dynamic coordination of ambulances for emergency medical assistance services. Knowl.-Based Syst. 70, 268–280 (2014)CrossRefGoogle Scholar
  9. 9.
    Bradley, S., Hax, A, Magnanti, T: Applied mathematical programming (1977)Google Scholar
  10. 10.
    Brooks, S. C., Schmicker, R. H., Rea, T. D., et al.: Out-of-hospital cardiac arrest frequency and survival: Evidence for temporal variability. Resuscitation 81(2), 175–181 (2010)CrossRefGoogle Scholar
  11. 11.
    Cannon, C.P., Gibson, C.M., Lambrew, C.T., Shoultz, D.A., Levy, D., French, W.J., Gore, J.M., Weaver, W.D., Rogers, W.J., Tiefenbrunn, A.J.: Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA: J. Amer. Med. Assoc. 283(22), 2941–2947 (2000)CrossRefGoogle Scholar
  12. 12.
    Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: A literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chevaleyre, Y., Dunne, P. E., Endriss, U., et al.: Issues in multiagent resource allocation. Informatica 30(1), 2006Google Scholar
  14. 14.
    Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource allocation with k-additive utility functions. In: Proc. DIMACS-LAMSADE Workshop on Computer Science and Decision Theory, Annales du LAMSADE, pp. 83–100 (2004)Google Scholar
  15. 15.
    Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event processing. ACM Comput. Surv. (CSUR) 44(3), 15 (2012)CrossRefGoogle Scholar
  16. 16.
    De Luca, G., Suryapranata, H., Ottervanger, J. P., Antman, E. M: Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction every minute of delay counts. Circulation 109(10), 1223–1225 (2004)CrossRefGoogle Scholar
  17. 17.
    Dilaveris, P, Synetos, A., Giannopoulos, G., et al.: Climate impacts on myocardial infarction deaths in the athens territory: The climate study. Heart 92(12), 1747–1751 (2006)CrossRefGoogle Scholar
  18. 18.
    Domnori, E., Cabri, G., Leonardi, L.: Coordination issues in an agent-based approach for territorial emergence management. In: 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA), pp. 184–189. IEEE (2011)Google Scholar
  19. 19.
    Endriss, U., Maudet, N., Sadri, F., Toni, F.: On optimal outcomes of negotiations over resources. In: AAMAS, vol. 3, pp. 177–184 (2003)Google Scholar
  20. 20.
    Gendreau, M., Laporte, G., Semet, F.: A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Comput. 27(12), 1641–1653 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Giordani, S., Lujak, M., Martinelli, F.: A distributed algorithm for the multi-robot task allocation problem. In: Trends in Applied Intelligent Systems: Proc. of the 23rd Internat. Conf. on Ind. eng. and other Applications Of Applied Int. Systems, Volume 6096 of Lecture Notes in Artificial Intelligence, pp. 721–730. Springer-Verlag (2010)Google Scholar
  22. 22.
    Guerriero, F., Guido, R.: Operational research in the management of the operating theatre: A survey. Health Care Manag. Sci. 14(1), 89–114 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Henderson, S. G: Operations research tools for addressing current challenges in emergency medical services. Wiley Encyclopedia of Operations Research and Management Science (2011)Google Scholar
  24. 24.
    Herlitz, J., Eek, M., Holmberg, M., Holmberg, S.: Diurnal, weekly and seasonal rhythm of out of hospital cardiac arrest in sweden. Resuscitation 54(2), 133–138 (2002)CrossRefGoogle Scholar
  25. 25.
    Jollis, J. G, Granger, C. B., Henry, T. D, et al.: Systems of care for st-segment–elevation myocardial infarction: A report from the american heart association mission: Lifeline. Circ. Cardiovas. Quality Outcomes 5(4), 423–428 (2012)CrossRefGoogle Scholar
  26. 26.
    Kriszbacher, I., Boncz, I., Koppán, M., Bódis, J.: Seasonal variations in the occurrence of acute myocardial infarction in hungary between 2000 and 2004. Int. J. Cardiol. 129(2), 251–254 (2008)CrossRefGoogle Scholar
  27. 27.
    Kuhn, H. W: The hungarian method for the assignment problem. Naval Res. Logis. Q. 2(1–2), 83–97 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lee, J. H., Chae, S. C., Yang, D. H., et al.: Influence of weather on daily hospital admissions for acute myocardial infarction (from the korea acute myocardial infarction registry). Int. J. Cardiol. 144(1), 16–21 (2010)CrossRefGoogle Scholar
  29. 29.
    Leiza, J. R. G., de Llano, J. M. A., Messa, J. B. L., et al.: New insights into the circadian rhythm of acute myocardial infarction in subgroups. Chronobiol. Int. 24 (1), 129–141 (2007)CrossRefGoogle Scholar
  30. 30.
    Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., et al.: Heart disease and stroke statistics 2010 update a report from the american heart association. Circulation 121(7), e46–e215 (2010)CrossRefGoogle Scholar
  31. 31.
    López, B., Aciar, S., Innocenti, B., Cuevas, I.: How multi-agent systems support acute stroke emergency treatment. In: IJCAI Workshop A2HC, pp. 51–59 (2005)Google Scholar
  32. 32.
    López, B., Innocenti, B., Busquets, D.: A multiagent system for coordinating ambulances for emergency medical services. Intel. Syst. IEEE 23(5), 50–57 (2008)CrossRefGoogle Scholar
  33. 33.
    Lujak, M., Billhardt, H.: Coordinating emergency medical assistance. In: Agreement Technologies, pp. 597–609. Springer (2013)Google Scholar
  34. 34.
    Lujak, M., Billhardt, H., Ossowski, S.: Optimizing emergency medical assistance coordination in after-hours urgent surgery patients. In: Bulling, N. (ed.) Multi-agent systems, volume 8953 of LNCS, pp. 316–331. Springer (2015)Google Scholar
  35. 35.
    Manfredini, R., Manfredini, F., Boari, B., et al.: Seasonal and weekly patterns of hospital admissions for nonfatal and fatal myocardial infarction. Amer. J. Emer. Med. 27(9), 1097–1103 (2009)CrossRefGoogle Scholar
  36. 36.
    Martens, P. R, Calle, P., Van den Poel, B., Lewi, P., Belgian Cardiopulmonary Cerebral Resuscitation Study Group, et al.: Further prospective evidence of a circadian variation in the frequency of call for sudden cardiac death. Intensive Care Med. 21(1), 45–49 (1995)CrossRefGoogle Scholar
  37. 37.
    Mingo, S., Goicolea, J., Nombela, L., et al.: Angioplastia primaria en nuestro medio. análisis de los retrasos hasta la reperfusión, sus condicionantes y su implicación pronóstica. Revista española de cardiología 62(1), 15–22 (2009)CrossRefGoogle Scholar
  38. 38.
    Instituto nacional de estadistica. Defuncines según la causa de muerte, año (2009). http://www.ine.es/prensa/np664.pdf, February 2011
  39. 39.
    Rais, A., Viana, A.: Operations research in healthcare: A survey. Int. Trans. Oper. Res. 18(1), 1–31 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Rathore, S.S., Curtis, J.P., Chen, J., Wang, Y., Nallamothu, B.K., Epstein, A.J., Krumholz, H.M., et al.: Association of door-to-balloon time and mortality in patients admitted to hospital with st elevation myocardial infarction: National cohort study. BMJ: British Med. J., 338 (2009)Google Scholar
  41. 41.
    Rodríguez, J. Á., Flores, I. C., Rodríguez, J. B., et al.: Reperfusión del infarto agudo de miocardio con elevación del segmento st en la comunidad de madridGoogle Scholar
  42. 42.
    Sen, A. K.: Collective choice and social welfare, vol. 11. Elsevier (2014)Google Scholar
  43. 43.
    WHO Fact sheet No. 310. http://www.who.int/mediacentre/factsheets/fs310/en/, May 2014
  44. 44.
    Soon, C Y, Chan, W X, Tan, H C: The impact of time-to-balloon on outcomes in patients undergoing modern primary angioplasty for acute myocardial infarction. Sing. Med. J. 48(2), 131 (2007)Google Scholar
  45. 45.
    Steg, P.G., James, S.K., Atar, D., et al.: Esc guidelines for the management of acute myocardial infarction in patients presenting with st-segment elevation the task force on the management of st-segment elevation acute myocardial infarction of the european society of cardiology (esc). Eur. Heart J. (2012)Google Scholar
  46. 46.
    Takahashi, M., Kohsaka, S., Miyata, H., et al.: Association between prehospital time interval and short-term outcome in acute heart failure patients. J. Card. Fail. 17 (9), 742–747 (2011)CrossRefGoogle Scholar
  47. 47.
    Terkelsen, C. J., Sørensen, J. T., Maeng, M., et al.: System delay and mortality among patients with stemi treated with primary percutaneous coronary intervention. JAMA: J. Amer. Med. Assoc. 304(7), 763–771 (2010)CrossRefGoogle Scholar
  48. 48.
    Van de Werf, F., Bax, J., Betriu, A., et al.: Management of acute myocardial infarction in patients presenting with persistent st-segment elevation. Eur. Heart J. 29 (23), 2909–2945 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marin Lujak
    • 1
  • Holger Billhardt
    • 1
  • Sascha Ossowski
    • 1
  1. 1.University Rey Juan CarlosMadridSpain

Personalised recommendations