Computing envelopes in dynamic geometry environments

Article

Abstract

We review the behavior of some popular dynamic geometry software when computing envelopes, relating the diverse methods implemented in these programs with the various definitions of envelope. Special attention is given to the new GeoGebra 5.0 version, that incorporates a mathematically rigorous approach for envelope computations. Furthermore, a discussion on the role, in this context, of the cooperation between GeoGebra and a recent parametric polynomial solving algorithm is detailed. This approach seems to yield accurate results, allowing for the first time sound computations of envelopes of families of plane curves in interactive environments.

Keywords

Automated deduction in geometry Envelope computation Dynamic geometry 

Mathematics Subject Classification (2010)

Primary 68T15 Secondary 68W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    List of interactive geometry software: Available at http://en.wikipedia.org/wiki/List_of_interactive_geometry_software (2013)
  2. 2.
    EUKLID DynaGeo Forum: Available at http://www.dynageo.de/discus/messages/14/232.html?1076183239 (2014)
  3. 3.
    Dana-Picard, Th., Zehavi, N.: Revival of a classical topic in differential geometry: envelopes of parameterized families of curves and surfaces. In: Martínez–Moro, E., Kotsireas, I. (eds.) Applications of Computer Algebra ACA 2015 Booklet of Abstracts, pp 53–56, Kalamata (2015)Google Scholar
  4. 4.
    Thom, R.: Sur la théorie des enveloppes. J. Math. Pure Appl. 49, 177–192 (1962)MATHGoogle Scholar
  5. 5.
    Botana F., Kovács, Z.: A singular web service for geometric computations. Ann. Math. Artif. Intell. 74, 359–370 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Abánades, M.A., Botana, F., Montes, A., Recio, T.: An algebraic taxonomy for locus computation in Dynamic Geometry. Comput. Aided Des. 56, 22–33 (2014)CrossRefMATHGoogle Scholar
  7. 7.
    Botana, F., Valcarce, J.L.: A dynamic–symbolic interface for geometric theorem discovery. Comput. Educ. 38, 21–35 (2002)CrossRefGoogle Scholar
  8. 8.
    Botana, F., Valcarce, J.L.: Automatic determination of envelopes and other derived curves within a graphic environment. Math. Comput. Simul. 67, 3–13 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Botana, F., Recio, T.: A propósito de la envolvente de una familia de elipses. Bol. Soc. Puig–Adam 95, 15–30 (2013)Google Scholar
  10. 10.
    Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45, 1391–1425 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Botana, F., Recio, T.: Some issues on the automatic computation of plane envelopes in interactive environments. Math. Comp. Simul. doi:10.1016/j.matcom.2014.05.011
  12. 12.
  13. 13.
  14. 14.
    Envelope_(mathematics): Available at https://en.wikipedia.org/wiki/Envelope_mathematics (2015)
  15. 15.
    Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge University Press, Cambridge (1984)MATHGoogle Scholar
  16. 16.
    GeoGebra User Forum: Available at http://www.geogebra.org/forum/viewtopic.php?f=2&t=20103 (2011)
  17. 17.
    Julia, G.: Éléments de Géométrie Infinitésimale. Gauthier–Villars, Paris (1936)MATHGoogle Scholar
  18. 18.
    Amir–Moéz, A.R.: Synthetic approach to the theory of envelopes. Am. Math. Month. 64, 265–268 (1957)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Scarpello, G-M-, Scimone, A.: The Work of Tschirnhaus, La Hire and Leibniz on Catacaustics and the Birth of the Envelopes of Lines in the 17th Century, Arch. Hist. Exact Sci. 59, 223–250 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Depto. de Matemática Aplicada IUniversidad de VigoPontevedraSpain
  2. 2.Depto. de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations