A series of revisions of David Poole’s specificity

  • Claus-Peter WirthEmail author
  • Frieder Stolzenburg


In the middle of the 1980s, David Poole introduced a semantic, model-theoretic notion of specificity to the artificial-intelligence community. Since then it has found further applications in non-monotonic reasoning, in particular in defeasible reasoning. Poole tried to approximate the intuitive human concept of specificity, which seems to be essential for reasoning in everyday life with its partial and inconsistent information. His notion, however, turns out to be intricate and problematic, which — as we show — can be overcome to some extent by a closer approximation of the intuitive human concept of specificity. Besides the intuitive advantages of our novel specificity orderings over Poole’s specificity relation in the classical examples of the literature, we also report some hard mathematical facts: Contrary to what was claimed before, we show that Poole’s relation is not transitive in general. The first of our specificity orderings (CP1) captures Poole’s original intuition as close as we could get after the correction of its technical flaws. The second one (CP2) is a variation of CP1 and presents a step toward similar notions that may eventually solve the intractability problem of Poole-style specificity relations. The present means toward deciding our novel specificity relations, however, show only slight improvements over the known ones for Poole’s relation; therefore, we suggest a more efficient workaround for applications in practice.


Artificial intelligence Non-monotonic reasoning Defeasible reasoning Specificity Positive-conditional specification 

Mathematics Subject Classification (2010)

06A06 68T27 68T30 68T37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C., De Giacomo, G., Eiter, T. (eds.): Proceedings of the 14 th KR 2014 — International Conference on Principles of Knowledge Representation and Reasoning, Jul 20–24, as part of the Vienna Summer of Logic, Vienna, July 9–24, 2014, AAAI Press (2014)
  2. 2.
    Benferhat, S., Garcia, L.: A coherence-based approach to default reasoning. In: Gabbay, D., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.) Proceedings of the 1st International Joint Conference on Qualitative and Quantitative Practical Reasoning, 1997, June 9–12, Bad Honnef (Germany), Springer, no. 1244 in Lecture Notes in Computer Science, pp 43–57 (1997), doi: 10.1007/BFb0035611
  3. 3.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128, 203–235 (2001). doi: 10.1016/S0004-3702(01)00071-6. received Dec. 8, 2000MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Besnard, P., Grégoire, É., Raddaoui, B.: A conditional logic-based argumentation framework. In: [20, pp. 44–56] (2013), doi: 10.1007/978-3-642-40381-1_4
  5. 5.
    Chesñevar, C.I., Dix, J., Stolzenburg, F., Simari, G.R.: Relating defeasible and normal logic programming through transformation properties. Theor. Comput. Sci. 290, 499–529 (2003). doi: 10.1016/S0304-3975(02)00033-6. received Jan. 8, 2001; rev. Nov. 9, 2001MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer (2003). 5 th edn. (1 st edn.1981)Google Scholar
  7. 7.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–358 (1995). doi: 10.1016/0004-3702(94)00041-X MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dung, P.M., Son, T.C.: An argumentation-theoretic approach to reasoning with specificity. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of the 5 th International Conference on Principles of Knowledge Representation and Reasoning, 1996, Nov. 5–8, Cambridge (MA), Morgan Kaufmann (Elsevier), Los Altos (CA), pp 506–517 (1996)Google Scholar
  9. 9.
    Furbach, U., Glöckner, I., Pelzer, B.: An application of automated reasoning in natural-language question answering. AI Comm. 23, 241–265 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Furbach, U., Schon, C., Stolzenburg, F., Weis, K.H., Wirth, C.P.: The RatioLog Project — Rational Extensions of Logical Reasoning. KI – Künstliche Intelligenz (German J of Artificial Intelligence), Springer 29, 1–7 (2015). doi: 10.1007/s13218-015-0377-9. published online June 05, 2015 [Also in arXiv:1503.06087]CrossRefGoogle Scholar
  11. 11.
    Gabbay, D. (ed.): Handbook of Philosophical Logic. Kluwer (Springer Science+Business Media), 2nd edn. (2002)Google Scholar
  12. 12.
    Gabbay, D., Woods, J.: Handbook of the History of Logic. Elsevier, North-Holland (2004)CrossRefGoogle Scholar
  13. 13.
    García, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming, vol. 4, pp 95–138. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  14. 14.
    Gelfond, M., Przymusinska, H.: Formalization of inheritance reasoning in autoepistemic logic. Fundamenta Informaticae XIII, 403–443 (1990)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gillman, L.: Writing Mathematics Well. The Mathematical Association of America (1987)Google Scholar
  16. 16.
    Herbrand, J.: Recherches sur la théorie de la démonstration. PhD thesis, Université de Paris, no. d’ordre 2121, Série A, No. de Série 1252 — Imprimerie J. Dziewulski, Varsovie — Univ. de Paris. Also in Prace Towarzystwa Naukowego Warszawskiego, Wydział III Nauk Matematyczno-Fizychnych, Nr. 33, Warszawa (1930)Google Scholar
  17. 17.
    Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals. [24, pp. 456–461] (2012). doi: 10.3233/978-1-61499-098-7-456
  18. 18.
    Kowalski, R.A.: Predicate logic as a programming language. In: [25, pp. 569–574] (1974)Google Scholar
  19. 19.
    Lambert, J.H.: Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung von Irrthum und Schein. Johann Wendler, Leipzig, Vol. I (Dianoiologie oder die Lehre von den Gesetzen des Denkens, Alethiologie oder Lehre von der Wahrheit) ( & Vol. II (Semiotik oder Lehre von der Bezeichnung der Gedanken und Dinge, Phänomenologie oder Lehre von dem Schein) ( Facsimile reprint by Georg Olms Verlag, Hildesheim, 1965, with a German introduction by Hans Werner Arndt (1764)
  20. 20.
    Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.): Proceedings of the 7th International Conference on Scalable Uncertainty Management (SUM 2013), Washington (DC), Sept. 16–18, 2013, no. 8078 in Lecture Notes in Computer Science, Springer (2013)Google Scholar
  21. 21.
    Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a tutorial. Argument & Computation 5, 31–62 (2014). doi: 10.1080/19462166.2013.869766 CrossRefGoogle Scholar
  22. 22.
    Poole, D.L.: On the comparison of theories: Preferring the most specific explanation. In: Joshi, A. (ed.) Proceedings of the 9 th International Joint Conference on Artificial Intelligence (IJCAI), 1985, Aug. 18–25, Los Angeles (CA), Morgan Kaufmann (Elsevier), Los Altos (CA), pp 144–147 (1985).
  23. 23.
    Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: [11, pp. 218–319] (2002)Google Scholar
  24. 24.
    Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.): Proceedings of the 20 th European Conference on Artificial Intelligence (ECAI), Aug. 27–31, 2012, Montepellier, France, no. 242 in Frontiers in Artificial Intelligence and Applications, IOS Press (2012)
  25. 25.
    Rosenfeld, J.L. (ed.): Proceedings of the Congress of the International Federation for Information Processing (IFIP), Stockholm (Sweden), Aug. 5–10, 1974, North-Holland (Elsevier) (1974)Google Scholar
  26. 26.
    Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53, 125–157 (1992). received Feb. 1990, rev. April 1991MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stolzenburg, F., García, A.J., Chesñevar, C.I., Simari, G.R.: Computing generalized specificity. J. Applied Non-Classical Logics 13, 87–113 (2003). doi: 10.3166/jancl.13.87-113 CrossRefzbMATHGoogle Scholar
  28. 28.
    Wirth, C.P.: Positive/Negative-Conditional Equations: A Constructor-Based Framework for Specification and Inductive Theorem Proving, Schriftenreihe Forschungsergebnisse zur Informatik, vol 31. Verlag Dr. Kovač, Hamburg, PhD thesis, Univ. Kaiserslautern, ISBN 386064551X. (1997)
  29. 29.
    Wirth, C.P.: Shallow confluence of conditional term rewriting systems. J. Symb. Comput. 44, 69–98 (2009). doi: 10.1016/j.jsc.2008.05.005 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wirth, C.P.: Herbrand’s Fundamental Theorem in the eyes of Jean van Heijenoort. Logica Universalis 6, 485–520 (2012). doi: 10.1007/s11787-012-0056-7. received Jan. 12, 2012. Published online June 22, 2012MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wirth, C.P.: Herbrand’s Fundamental Theorem: The Historical Facts and their Streamlining. SEKI-Report SR–2014–01 (ISSN 1437–4447), SEKI Publications, ii+47 pp., arXiv:1405.6317 (2014)
  32. 32.
    Wirth, C.P.: Herbrand’s Fundamental Theorem — an encyclopedia article. SEKI-Report SR–2015–01 (ISSN 1437–4447), SEKI Publications, ii+16 pp., arXiv:1503.01412 (2015)
  33. 33.
    Wirth, C.P., Gramlich, B.: A constructor-based approach to positive/negative-conditional equational specifications. J. Symb. Comput. 17, 51–90 (1994). doi: 10.1006/jsco.1994.1004. MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wirth, C.P., Stolzenburg, F.: David Poole’s Specificity Revised. SEKI-Report SR–2013–01 (ISSN 1437–4447), SEKI Publications, ii+34 pp., arXiv:1308.4943 (2013)
  35. 35.
    Wirth, C.P., Stolzenburg, F.: David Poole’s specificity revised. In: [1, pp. 168–177] Short version of [34] (2014)Google Scholar
  36. 36.
    Wirth, C.P., Siekmann, J., Benzmüller, Ch., Autexier, S.: Jacques Herbrand: Life, logic, and automated deduction. In: [12, Vol. 5: Logic from Russell to Church, pp. 195–254] (2009)Google Scholar
  37. 37.
    Wirth, C.P., Siekmann, J., Benzmüller, Ch., Autexier, S.: Lectures on Jacques Herbrand as a Logician. SEKI-Report SR–2009–01 (ISSN 1437–4447), SEKI Publications, Rev. edn. May 2014, ii+82 pp., arXiv:0902.4682 (2014)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Automation and Computer SciencesHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations