Advertisement

Latent binary MRF for online reconstruction of large scale systems

  • Victorin Martin
  • Jean-Marc Lasgouttes
  • Cyril Furtlehner
Article

Abstract

We present a novel method for online inference of real-valued quantities on a large network from very sparse measurements. The target application is a large scale system, like e.g. a traffic network, where a small varying subset of the variables is observed, and predictions about the other variables have to be continuously updated. A key feature of our approach is the modeling of dependencies between the original variables through a latent binary Markov random field. This greatly simplifies both the model selection and its subsequent use. We introduce the mirror belief propagation algorithm, that performs fast inference in such a setting. The offline model estimation relies only on pairwise historical data and its complexity is linear w.r.t. the dataset size. Our method makes no assumptions about the joint and marginal distributions of the variables but is primarily designed with multimodal joint distributions in mind. Numerical experiments demonstrate both the applicability and scalability of the method in practice.

Keywords

Latent variables Markov random field Belief propagation Inference Soft constraints 

Mathematics Subject Classification (2010)

68T05 60K35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter, R.: Exactly solved models in statistical mechanics. Dover Publications (2008)Google Scholar
  2. 2.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In Database Theory-ICDT’99, pp 217–235. Springer (1999)Google Scholar
  3. 3.
    Bickson, D.: Gaussian Belief Propagation: Theory and Application. PhD thesis, Hebrew University of Jerusalem (2008)Google Scholar
  4. 4.
    Bilmes, J.: On soft evidence in Bayesian networks. Technical report, University of Washington (2004)Google Scholar
  5. 5.
    Boyen, X.: Inference and Learning in Complex Stochastic Processes. PhD thesis, Stanford University, Computer Science Department, 229 (2002)Google Scholar
  6. 6.
    Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain evidence. Artif. Intell. 163(1), 67–90 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cocco, S., Monasson, R.: Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests. J. Stat. Phys. 147(2), 252–314 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefzbMATHGoogle Scholar
  9. 9.
    Darroch, J., Ratcliff, D.: Generalized iterative scaling for log-linear models. The Annals Math. Stat. 43(5), 1470–1480 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B (Methodological), 1–38 (1977)Google Scholar
  11. 11.
    Doucet, A., de Freitas, N., Gordon, N.: An introduction to sequential monte carlo methods. Springer-Verlag, New York (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Furtlehner, C.: Approximate inverse Ising models close to a Bethe reference point. J. Stat. Mech.: Theory Exp. 2013(09), P09020 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Furtlehner, C., Han, Y., Lasgouttes, J.-M., Martin, V., Marchal, F., Moutarde, F.: Spatial and temporal analysis of traffic states on large scale networks. In: Procceding of the 13th International IEEE Conference on Intelligent Transportation Systems, 1215–1220 (2010)Google Scholar
  15. 15.
    Furtlehner, C., Lasgouttes, J.-M., Auger, A.: Learning multiple belief propagation fixed points for real time inference. Phys. A: Stat. Mech. Appl. 389(1), 149–163 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Han, T.X., Ning, H., Huang, T.S.: Efficient nonparametric belief propagation with application to articulated body tracking. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, 214–221 (2006)Google Scholar
  17. 17.
    Herrera, J., Work, D., Herring, R., Ban, X., Jacobson, Q., Bayen, A.: Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field experiment. Transp. Res. Part C: Emerg. Technol. 18(4), 568–583 (2010)CrossRefGoogle Scholar
  18. 18.
    Ihler, A., Fischer, J.I., Willsky, A.: Loopy belief propagation: convergence and effects of message errors. J. Mach. Learn. Res. 6, 905–936 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jalali, A., Johnson, C., Ravikumar, P.: On learning discrete graphical models using greedy methods. arXiv:1107.3258 (2011)
  20. 20.
    Jaynes, E.T.: Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4(3), 227–241 (1968)CrossRefzbMATHGoogle Scholar
  21. 21.
    Jaynes, E.T.: Probability Theory: The Logic of Science (Vol 1). Cambridge University Press, 2003. ISBN 0521592712Google Scholar
  22. 22.
    Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mackay, D.J., Yedidia, J.S., Freeman, W.T., Weiss, Y., et al.: A conversation about the Bethe free energy and sum-product. Available at, http://www.merl.com/publications/TR2001-018/ (2001)
  24. 24.
    Martin, V.: Modélisation Probabiliste et inférence par l’algorithme belief propagation. PhD thesis, Mines-ParisTech (2013)Google Scholar
  25. 25.
    Martin, V., Furtlehner, C., Han, Y., Lasgouttes, J.-M.: GMRF Estimation under Spectral and Topological constraints. In: Machine Learning and Knowledge Discovery in Databases, volume 8725 of Lecture Notes in Computer Science, pages 370–385. Springer Berlin Heidelberg (2014)Google Scholar
  26. 26.
    Mézard, M., Mora, T.: Constraint satisfaction problems and neural networks: A statistical physics perspective. J. Physiology-Paris 103(1-2), 107–113 (2009)CrossRefGoogle Scholar
  27. 27.
    Mézard, M., Parisi, G., Virasoro, M.: Spin glass theory and beyond. World scientific, Singapore (1987)Google Scholar
  28. 28.
    Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C 19, 606–616 (2011)CrossRefGoogle Scholar
  29. 29.
    Mooij, J.M., Kappen, H.J.: Sufficient conditions for convergence of the sum-product algorithm. IEEE Trans. Inf. Theory 53(12), 4422–4437 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann (1988)Google Scholar
  31. 31.
    PUMAS project: http://team.inria.fr/pumas/ (in French)
  32. 32.
    Ravikumar, P., Wainwright, M.J., Lafferty, J.D.: High-dimensional Ising model selection using L 1 regularized logistic regression. Ann. Stat. 38(3), 1287–1319 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Smith, B.L., Williams, B.M., Keith Oswald, R.: Comparison of parametric and nonparametric models for traffic flow forecasting. Trans. Res, Part C: Emerg. Technol. 10(4), 303–321 (2002)CrossRefGoogle Scholar
  34. 34.
    Sudderth, E., Ihler, A., Isard, M., Freeman, W., Willsky, A.: Nonparametric Belief Propagation. Commun. ACM 53(10), 95–103 (Oct. 2010)CrossRefGoogle Scholar
  35. 35.
    Tatikonda, S., Jordan, M.: Loopy Belief Propagation and Gibbs measures. In: Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, 493–50 (2002)Google Scholar
  36. 36.
    Teh, Y.W., Welling, M.: Passing and bouncing messages for generalized inference. Technical report, UCL (2001)Google Scholar
  37. 37.
    Wainwright, M.J.: Estimating the “wrong” graphical model: benefits in the computation-limited setting. J. Mach. Learn. Res. 7, 1829–1859 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Welling, M., Teh, Y.W.: Approximate inference in Boltzmann machines. Artif. Intell. 143(1), 19–50 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yasuda, M., Tanaka, K.: Approximate learning algorithm in Boltzmann machines. Neural Comput. 21(11), 3130–3178 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized Belief Propagation algorithms. IEEE Trans. Inf. Theory 51(7), 2282–2312 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victorin Martin
    • 1
  • Jean-Marc Lasgouttes
    • 2
  • Cyril Furtlehner
    • 3
  1. 1.Center for Robotics, Mines ParisTechPSL Research UniversityParisFrance
  2. 2.Inria Paris–Rocquencourt, Domaine de Voluceau, BP. 105Le Chesnay CEDEXFrance
  3. 3.Inria Saclay–Île-de-France LRI Bât 660 Université Paris-SudOrsay CEDEXFrance

Personalised recommendations