Advertisement

On multivariate network analysis of statistical data sets with different measures of association

  • Valery A. KalyaginEmail author
  • Alexander P. Koldanov
  • Panos M. Pardalos
Article

Abstract

The main goal of the present paper is the development of a general framework of multivariate network analysis of statistical data sets. A general method of multivariate network construction, on the basis of measures of association, is proposed. In this paper we consider Pearson correlation network, sign similarity network, Fechner correlation network, Kruskal correlation network, Kendall correlation network, and the Spearman correlation network. The problem of identification of the threshold graph in these networks is discussed. Different multiple decision statistical procedures are proposed. It is shown that a statistical procedure used for threshold graph identification in one network can be efficiently used for any other network. Our approach allows us to obtain statistical procedures with desired properties for any network.

Keywords

Network analysis Multivariate networks Statistical data sets Measures of association Threshold graph Multiple decision statistical procedures 

Mathematics Subject Classification (2010)

Primary 90B15 Secondary 62H15 62H20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bautin, G., Kalyagin, V.A., Koldanov, A.P.: Comparative analysis of two similarity measures for the market graph construction. In: Springer Proceedings in Mathematics and Statistics, vol. 59, pp. 29–41 (2013)Google Scholar
  2. 2.
    Bautin, G.A., Koldanov, A.P., Pardalos, P.M.: Robustness of sign correlation in market network analysis. In: Network Models in Economics and Finance, Springer Optimization and Its Applications, vol. 100, pp. 25–33 (2014)Google Scholar
  3. 3.
    Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: A network approach. J. Comput. Oper. Res. 33(11), 3171–3184 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kalyagin, V.A., Koldanov, A.P., Pardalos, P.M.: A general approach to network analysis of statistical data sets. In: Learning and Intelligent Optimization, Lecture Notes in Computer Science, vol. 8426, pp. 88–97. Springer (2014)Google Scholar
  5. 5.
    Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M., Zamaraev, V.A.: Measures of uncertainty in market network analysis. Phys. A: Stat. Mech. Appl. 413(1), 59–70 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kapteyn, J.C.: Definition of the correlation coefficient. Mon. Not. R. Astron. Soc. 72, 518–525 (1912)CrossRefGoogle Scholar
  7. 7.
    Kerren, A., Purchase, H., Ward, M.O. (eds.): Multivariate Network Visualization. Lecture Notes in Computer Science, vol. 8380. Springer (2013)Google Scholar
  8. 8.
    Koldanov, A.P., Koldanov, P.A., Kalyagin, V.A., Pardalos, P.M.: Statistical procedures for the market graph construction. Comput. Stat. Data Anal. 68, 17–29 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Koldanov, P.A., Kalyagin, V.A., Koldanov, A.P.: Market graph identification in sign similarity networks in the class of elliptically contoured distributions, submitted to Annals of Operations ResearchGoogle Scholar
  10. 10.
    Kruskal, W.H.: Ordinal measures of association. J. Am. Stat. Assoc. 53, 814–861 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lauritzen, S.L.: Graphical Models. Oxford University Press, New York (1996)zbMATHGoogle Scholar
  12. 12.
    Lindskog, F., McNeil, A., Schmock, U.: Kendall tau for elliptical distributions. In: Bol, G., et al. (eds.) Credit Risk: Measurement, Evaluation and Management, pp. 149–156. Physica-Verlag, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  14. 14.
    Mikail, R., Olaf, S.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3), 10591069 (2010)Google Scholar
  15. 15.
    Shirokikh, J., Pastukhov, G., Boginski, V., Butenko, S.: Computational study of the US stock market evolution: A rank correlation-based network model. Comput. Manag. Sci. 10(2–3), 81–103 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tumminello, M., Aste, T., Matteo, T.D., Mantegna, R.N.: A tool for filtering information in complex systems. Proc. Natl. Acad. Sci. 102(30), 10421–10426 (2005)CrossRefGoogle Scholar
  17. 17.
    Wald, A.: Statistical Decision Function. Wiley, New York (1950)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Valery A. Kalyagin
    • 1
    Email author
  • Alexander P. Koldanov
    • 1
  • Panos M. Pardalos
    • 2
  1. 1.Laboratory of Algorithms and Technologies for Network Analysis (LATNA)National Research University Higher School of EconomicsNizhny NovgorodRussia
  2. 2.Center for Applied OptimizationUniversity of FloridaGainesvilleUSA

Personalised recommendations