On some statistical procedures for stock selection problem

  • Petr A. KoldanovEmail author
  • Valeriy A. Kalyagin
  • Grigory A. Bautin


The problem of stock selection in market network is discussed from different points of view. Three different sequentially rejective statistical procedures for stock selection are described and compared: Holm multiple test procedure, maximin multiple test procedure and multiple decision procedure. Properties of statistical procedures are studied for different loss functions. It is shown that conditional risk for additive loss function essentially depends on correlation matrix for maximin procedure, and does not depend for multiple decision procedure. The dependence on correlation matrix is different for 0-1 (non additive) loss functions. Dependence of error probability and conditional risk on the selection threshold is studied as well.


Large scale networks Stock selection Multiple decision statistical procedures Multiple testing statistical procedures loss functions Conditional risk Probability of error 

Mathematics Subject Classifications (2010)

62-07 62C05 62P20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. J. Comput. Stat. Data Anal. 48(2), 431–443 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network approach. J. Comput. Oper. Res. 33(11), 3171–3184 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cohen, A., Sackrowitz, H.b., Xu, M.: A new multiple testing method in the dependent case. Ann. Stat. 37(3), 1518–1544 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. Wiley, New York (1987)CrossRefzbMATHGoogle Scholar
  5. 5.
    Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M., Zamaraev, V.A.: Measures of uncertainty in market network analysis. Physica A Stat. Mech. Appl. 413(1), 59–70 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Koldanov, A.P., Koldanov, P.A., Kalyagin, V.A., Pardalos, P.M.: Statistical procedures for the market graph construction. Comput. Stat. Data Anal. 68, 17–29 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Koldanov, P., Kalyagin, V.A., Koldanov, A.P., Zamaraev, V.A.: Market graph and Markowitz model. In: Optimization in Science and Engineering (In Honor of the 60th Birthday of Panos M. Pardalos), pp. 301–313. Springer Science, Business Media (2014)Google Scholar
  8. 8.
    Koldanov, P., Bautin, G.A.: Multiple decision problem for stock selection in market network. In: Pardalos, P.M., Resende, M., Vogiatzis, C., Walteros, J. (eds.) Learning and Intelligent Optimization, Lecture Notes in Computer Science, Vol. 8426, pp 98–110. Springer (2014)Google Scholar
  9. 9.
    Koldanov, A.P., Koldanov, P.A: Optimal multiple decision statistical procedure for inverse covariance matrix. In: Demyanov, V.F., Pardalos, P.M., Batsyn, M.V. (eds.) Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications, Vol. 87, pp 205–216 (2014)Google Scholar
  10. 10.
    Koldanov, P.A.: Efficiency analysis of branch network. Springer Proc. Math. Stat. 59(XIV), 71–84 (2013)CrossRefGoogle Scholar
  11. 11.
    Lehmann, E.L.: A theory of some multiple decision procedures 1. Ann. Math. Stat. 28, 1–25 (1957)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York (2005)zbMATHGoogle Scholar
  13. 13.
    Wald, A.: Statistical Decision Function. Wiley, New York (1950)zbMATHGoogle Scholar
  14. 14.
    Duncan, D.: Multiple range and multiple F tests. Biometrics 11, 1–42 (1955)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Randles, R.H., Hollander, M.: γ-minimax selection procedures in treatments versus control problems. Ann. Math. Stat. 42, 330–341 (1971)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Petr A. Koldanov
    • 1
    • 2
    Email author
  • Valeriy A. Kalyagin
    • 1
    • 2
  • Grigory A. Bautin
    • 1
    • 2
  1. 1.National Research University Higher School of EconomicsNizhny NovgorodRussia
  2. 2.Lab LATNANational Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations