Lattice-based and topological representations of binary relations with an application to music

  • Anton Freund
  • Moreno Andreatta
  • Jean-Louis Giavitto


Formal concept analysis associates a lattice of formal concepts to a binary relation. The structure of the relation can then be described in terms of lattice theory. On the other hand Q -analysis associates a simplicial complex to a binary relation and studies its properties using topological methods. This paper investigates which mathematical invariants studied in one approach can be captured in the other. Our main result is that all homotopy invariant properties of the simplicial complex can be recovered from the structure of the concept lattice. This not only clarifies the relationships between two frameworks widely used in symbolic data analysis but also offers an effective new method to establish homotopy equivalence in the context of Q -analysis. As a musical application, we will investigate Olivier Messiaen’s modes of limited transposition. We will use our theoretical result to show that the simplicial complex associated to a maximal mode with m transpositions is homotopy equivalent to the (m−2)–dimensional sphere.


Formal concept analysis Q-analysis Simplicial complex Homotopy invariance Betti numbers Combinatorial classification of harmonies Mode of limited transposition 

Mathematics Subject Classifications (2010)

00A65 05E45 06A15 68R05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wille, R.: Restructuring lattice theory: An approach based on the hierarchy of concepts. In: Rival, I. (ed.) Ordered sets: proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to September 12, 1981. D. Reidel Pub. Co. (1982)Google Scholar
  2. 2.
    Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et Combinatoire. Hachette (1970)Google Scholar
  3. 3.
    Dowker, C.H.: Homology groups of relations. Ann. Math 2nd Series 56(1), 84–95 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Atkin, R.H.: From cohomology in physics to q–connectivity in social science. Int. J. Man Mach. Stud. 4(2), 139–167 (1972)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Casti, J.L.: Connectivity, Complexity, and Catastrophe in Large-Scale Systems. Wiley, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Freeman, L.C.: Q-analysis and the structure of friendship networks. Int. J. Man Mach. Stud. 12(4), 367–378 (1980)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Johnson, J.: Transport Planning and Control, Chapter The dynamics of Large Complex Road Systems. Oxford University Press, pp. 165–186 (1991)Google Scholar
  8. 8.
    Duckstein, L., Nobe, S.A.: q-analysis for modeling and decision making. Eur. J. Oper. Res. 103(3), 411–425 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, C.: Foundations of a connectivity theory for simplicial complexes. Adv. Appl. Math. 26(2), 97–128 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kaburlasos, V.G.: Special issue on information engineering applications based on lattices. Inf. Sci. 181(10), 1771–1773 (2011)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Catanzaro, M.J.: Generalized Tonnetze. J. Math. Music 5(2), 117–139 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer–Verlag, Berlin and Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Atkin, R.H.: Q-analysis. A hard language for the soft sciences. Futures, 492–499 (1978)Google Scholar
  14. 14.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  15. 15.
    Munkres, J.R.: Elements of Algebraic Topology. The Benjamin/Cummings Publication Company, Menlo Park (1984)zbMATHGoogle Scholar
  16. 16.
    Bigo, L., Giavitto, J.-L., Spicher, A.: Building topological spaces for musical objects. In: Mathematics and Computation in Music, volume 6726 of LNCS. Springer, Paris (2011)Google Scholar
  17. 17.
    Rehding, A.: Hugo Riemann and the Birth of Modern Musical Thought. Number 11 in New Perspectives in Music History and Criticism. Cambridge University Press (2003)Google Scholar
  18. 18.
    Lewin, D.: Generalized musical intervals and transformations. Yale University Press (2007 reedition by Oxford University Press) (1987)Google Scholar
  19. 19.
    Halsey, G.D., Hewitt, E.: Eine gruppentheoretische Methode in der Musiktheorie. Jahresbericht der Deutschen Mathematiker-Vereinigung 80, 151–207 (1978)MathSciNetGoogle Scholar
  20. 20.
    Collins, N.: Enumeration of chord sequences. In: Sound and Music Computing. Aalborg University Copenhangen, Denmark (2012). SMCGoogle Scholar
  21. 21.
    Reiner, D.L.: Enumeration in music theory. Am. Math. Mon., 51–54 (1985)Google Scholar
  22. 22.
    Fripertinger, H., Voitsberg, G.: Enumeration in musical theory. Institut für Elektronische Musik (IEM) (1992)Google Scholar
  23. 23.
    Fripertinger, H.: Enumeration of mosaics. Discret. Math. 199(1), 49–60 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Fripertinger, H.: Enumeration and construction in music theory. In: Proceedings of the Diderot Forum on Mathematics and Music (Vienna), pp. 170–203 (1999)Google Scholar
  25. 25.
    Mazzola, G., Muzzulini, D., Hofmann, G.R.: Geometrie der Töne: Elemente der Mathematischen Musiktheorie. Birkhäuser (1990)Google Scholar
  26. 26.
    Mazzola, G., et al.: The topos of music. Birkhäuser, Basel (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Mazzola, G.: Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie, volume 10 of Reasearch and Exposition in Mathematics. Heldermann (1985)Google Scholar
  29. 29.
    Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) Mathematics and Computation in Music, volume 7937 of Lecture Notes in Computer Science, pp 38–51. Springer, Berlin Heidelberg (2013)Google Scholar
  30. 30.
    Nestke, A.: Paradigmatic motivic analysis. In: Perspectives in Mathematical and Computational Music Theory, Osnabrück Series on Music and Computation, pp. 343–365 (2004)Google Scholar
  31. 31.
    Wille, R.: Musik und Mathematik: Salzburger Musikgespräch 1984 unter Vorsitz von Herbert von Karajan, chapter Musiktheorie und Mathematik, pp. 4–31. Springer (1985)Google Scholar
  32. 32.
    Noll, T., Brand, M.: Morphology of chords. Perspect. Math. Comput. Music Theory 1, 366 (2004)Google Scholar
  33. 33.
    Schlemmer, T., Andreatta, M.: Using formal concept analysis to represent chroma systems. In: Mathematics and Computation in Music, pp. 189–200. Springer (2013)Google Scholar
  34. 34.
    Forte, A.: The Structure of Atonal Music. Yale University Press (1973)Google Scholar
  35. 35.
    Lewin, D.: Forte’s interval vector, my interval function, and Regener’s common-note function. J. Music Theory, 194–237 (1977)Google Scholar
  36. 36.
    Bresson, J., Agon, C., Assayag, G.: Openmusic: Visual programming environment for music composition, analysis and research. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 743–746. ACM (2011)Google Scholar
  37. 37.
    Read, R.C.: Combinatorial problems in the theory of music. Discret. Math. 167, 543–551 (1997)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Broué, M.: Les tonalités musicales vues par un mathématicien. Le temps des savoirs (Revue de l’Institut Universitaire de France), pp. 37–78. Odile Jacob (2001)Google Scholar
  39. 39.
    Schlemmer, T., Schmidt, S.E.: A formal concept analysis of harmonic forms and interval structures. Ann. Math. Artif. Intell. 59(2), 241–256 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Borchmann, D., Ganter, B.: Concept lattice orbifolds — first steps. In: Ferré, S., Rudolph, S. (eds.) Formal Concept Analysis: 7th International Conference, ICFCA 2009 Darmstadt, Germany, May 21–24, 2009 Proceedings. Springer Verlag, Berlin and Heidelberg (2009)Google Scholar
  41. 41.
    Fripertinger, H.: Remarks on rhythmical canons. In: Fripertinger, H., Reich, L. (eds.) Proceedings of the Colloquium on Mathematical Music Theory, volume 347 of Grazer Math. Ber. pp. 73–90. Graz, Austria (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anton Freund
    • 1
  • Moreno Andreatta
    • 2
  • Jean-Louis Giavitto
    • 2
    • 3
  1. 1.Department of Pure MathematicsUniversity of LeedsLeedsUK
  2. 2.CNRS - UMR 9912, IRCAM & Sorbonne Universités, UPMC (Université Paris 6)ParisFrance
  3. 3.INRIA Rocquencourt MuTAnt teamParisFrance

Personalised recommendations