A Singular web service for geometric computations

Article

Abstract

Outsourcing algebraic computations in dynamic geometry tools is a possible strategy used when software distribution constraints apply. If the target user machine has hardware limitations, or if the computer algebra system cannot be easily (or legally) packaged inside the geometric software, this approach can solve current shortcomings in dynamic environments.We report the design and implementation of a web service using Singular, a program specialized in ideal theory and commutative algebra. Besides its canonical address, a virtual appliance and a port to a low-cost ARM based computer are also provided. Any interactive geometric environment can then outsource computations where Singular is used, and incorporate their results into the system. In particular, we illustrate the capabilities of the web service by extending current abilities of GeoGebra to deal with algebraic loci and envelopes by means of a recent algorithm for studying parametric polynomial systems.

Keywords

Web services Dynamic geometry Parametric polynomial systems Geometric loci Envelopes 

Mathematics Subject Classification (2010)

MSC2010 68W30 MSC2010 68T35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPG 9.48 MB)

10472_2014_9438_MOESM2_ESM.zip (34 kb)
(ZIP 34.1 KB)

(MPG 25.2 MB)

10472_2014_9438_MOESM4_ESM.zip (32 kb)
(ZIP 32.1 KB)

References

  1. 1.
    Sutherland, I.E.: Sketchpad: A man-machine graphical communication system, Tech. Rep. 574, Computer Laboratory, University of Cambridge (2003)Google Scholar
  2. 2.
    Gao, X.S., Lin, Q.: MMP/Geometer - A software package for automated geometric reasoning. Lect. Notes Artif. Int. 3763, 44–66 (2006)Google Scholar
  3. 3.
    Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan (1998)Google Scholar
  4. 4.
    Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J. Autom. Reason. 23, 63–82 (1999)CrossRefMATHGoogle Scholar
  5. 5.
    Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Comput. Educ. 38, 21–35 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Janičić, P.: Geometry constructions language. J. Autom. Reason. 44, 3–24 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013). Accessed 27 December 2013
  8. 8.
    Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45, 1391–1425 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Oracle Corporation: Java Native Interface (2013)Google Scholar
  10. 10.
    Ancsin, G., Hohenwarter, M., Kovács, Z.: GeoGebra Goes Web. Electron. J. Math. Technol. 7(6) 412–418 (2013)Google Scholar
  11. 11.
    Botana, F., Kovács Z., Weitzhofer, S.: Implementing theorem proving in GeoGebra by using a Singular webservice. In: Sendra, J.R., Villarino, C. (eds.) Proceedings EACA 2012, pp. 67–70. Universidad de Alcalá , Alcalá de Henares (2012)Google Scholar
  12. 12.
    Kovács, Z., Parisse, B.: Giac and GeoGebra — improved Gröbner basis computations, Special Semester on Applications of Algebra and Number Theory, Workshop 3 on Computer Algebra and Polynomials. https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf (2013). Accessed 27 December 2013
  13. 13.
    Kovács, Z.: Singular WebService. VirtualBox ISO Image. http://ggb1.idm.jku.at/kovzol/VMs/SingularWS-20140104.zip (2014). Accessed 7 January 2014
  14. 14.
    Kovács, Z.: Singular WebService in GeoGebra. http://dev.geogebra.org/trac/wiki/SingularWS (2012). Accessed 27 December 2013
  15. 15.
    Kovács, Z.: Singular WebService documentation and source code. http://code.google.com/p/singularws/source/browse/doc/README (2012). Accessed 27 December 2013
  16. 16.
    Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D.: Symbolic Computation Software Composability Protocol (SCSCP) specification, Version 1.3. (http://www.symbolic-computing.org/scscp) (2009)
  17. 17.
    Chen, X., Wang, D.: Management of geometric knowledge in textbooks. Data Knowl. Eng. 73, 43–57 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    Botana, F., Abánades, M.A.: Automatic deduction in (dynamic) geometry: Loci computation. Comp. Geom-Theor. Appl. 47, 75–89 (2014)CrossRefMATHGoogle Scholar
  19. 19.
    Abánades, M.A., Botana, F.: A dynamic symbolic geometry environment based on the GröbnerCover algorithm for the computation of geometric loci and envelopes. Lect. Notes Comput. Sc. 7961, 349–353 (2013)CrossRefGoogle Scholar
  20. 20.
    Botana, F.: Interactive versus symbolic approaches to plane loci generation in dynamic geometry environments. Lect. Notes Comput. Sc. 2330, 211–218 (2002)CrossRefGoogle Scholar
  21. 21.
    Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge University Press, Cambridge (1984)Google Scholar
  22. 22.
    Botana, F.: A parametric approach to 3D dynamic geometry. Math. Comput. Simulat. 104, 3–20 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Applied Mathematics IUniversity of VigoPontevedraSpain
  2. 2.Department of Mathematics EducationJohannes Kepler UniversityLinzAustria

Personalised recommendations