Formalizing complex plane geometry

Article

Abstract

Deep connections between complex numbers and geometry had been well known and carefully studied centuries ago. Fundamental objects that are investigated are the complex plane (usually extended by a single infinite point), its objects (points, lines and circles), and groups of transformations that act on them (e.g., inversions and Möbius transformations). In this paper, we treat the geometry of complex numbers formally and present a fully mechanically verified development within the theorem prover Isabelle/HOL. Apart from applications in formalizing mathematics and in education, this work serves as a ground for formally investigating various non-Euclidean geometries and their intimate connections. We discuss different approaches to formalization and discuss the major advantages of the more algebraically oriented approach.

Keywords

Interactive theorem proving Complex plane geometry Möbius transformations 

Mathematics Subject Classifications (2010)

68T15 51B10 97I80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Program. 13(2), 261–293 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cohen, C.: Pragmatic quotient types in Coq. In: Sandrine, B., Christine, P.-M., Pichardie, D. (eds.) Interactive Theorem Proving, vol. 7998 of Lecture Notes in Computer Science, pp 213–228. Springer Berlin Heidelberg (2013)Google Scholar
  3. 3.
    Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-Order Intuitionistic Formalization and Proofs in Hilberts Elementary Geometry. In: Automated Deduction in Geometry, vol. 2061 of Lecture Notes in Computer Science. Springer (2001)Google Scholar
  4. 4.
    Duprat, J.: Constructors: a ruler and a pair of compasses TYPES 2002 (2002)Google Scholar
  5. 5.
    Génevaux, J.-D., Narboux, J., Schreck, P.: Formalization of Wu’s simple method in Coq. In: CPP, vol. 7086 of Lecture Notes in Computer Science. Springer (2011)Google Scholar
  6. 6.
    Geuvers, H., Wiedijk, F., Zwanenburg, J.: A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals. In: Types for Proofs and Programs, vol. 2277 of Lecture Notes in Computer Science. Springer (2002)Google Scholar
  7. 7.
    Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their application to automatic geometry theorem proving. In: Automated Deduction in Geometry, vol. 6301 of Lecture Notes in Computer Science. Springer (2008)Google Scholar
  8. 8.
    Guilhot, F.: Formalisation en coq et visualisation d’un cours de géométrie pour le lycée. Tech. et Sci. Informatiques 24(9) (2005)Google Scholar
  9. 9.
    Haftmann, F., Wenzel, M.: Constructive type classes in isabelle. In: Types for Proofs and Programs, vol. 4502 of Lecture Notes in Computer Science, pp 160–174. Springer Berlin Heidelberg (2007)Google Scholar
  10. 10.
    Harrison, J.: A HOL Theory of Euclidean Space. In: TPHOLs, vol. 3603 of Lecture Notes in Computer Science. Springer (2005)Google Scholar
  11. 11.
    Harrison, J.: Without loss of generality.. In: Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009, vol. 5674 of LNCS, Munich. Springer-Verlag, Germany (2009)Google Scholar
  12. 12.
    Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reason. 50(2) (2013)Google Scholar
  13. 13.
    Hilbert, D., Townsend, E.J.: The Foundations Of Geometry. Kessinger Publishing (2006)Google Scholar
  14. 14.
    Hille, E.: Analytic Function Theory. AMS Chelsea Publishing. American Mathematical Society (1973)Google Scholar
  15. 15.
    Huffman, B., Kunčar, O.: Lifting and Transfer A Modular Design for Quotients in Isabelle/HOL Certified Programs and Proofs, vol. 8307 of LNCS. Springer International Publishing (2013)Google Scholar
  16. 16.
    Janičić, P., Narboux, J., Quaresma, P.: The area method. J. Autom. Reason. 48(4) (2012)Google Scholar
  17. 17.
    Kahn, G.: Constructive geometry according to Jan von Plato. Coq contribution, Coq V5.10 (1995)Google Scholar
  18. 18.
    Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pp 1639–1644, New York, NY USA ACM (2011)Google Scholar
  19. 19.
    Magaud, N., Narboux, J., Schreck, P.: Formalizing Projective Plane geometry in Coq. In: Automated Deduction in Geometry, vol. 6301 of Lecture Notes in Computer Science. Springer (2011)Google Scholar
  20. 20.
    McKenzie Makarios, T.J.: A mechanical verification of the independence of Tarski’s Euclidean axiom Master’s thesis. Victoria University of Wellington (2012)Google Scholar
  21. 21.
    Marić, F., Petrović, D.: Formalizing analytic geometries , Automated Deduction in Geometry (2012)Google Scholar
  22. 22.
    Marić, F., Petrović, I., Petrović, D., Janičić, P.: Formalization and implementation of algebraic methods in geometry. In: THedu, vol. 79 of EPTCS (2011)Google Scholar
  23. 23.
    Meikle, L., Fleuriot, J.: Formalizing Hilberts Grundlagen in Isabelle/Isar. In: Theorem Proving in Higher Order Logics, vol. 2758 of Lecture Notes in Computer Science. Springer (2003)Google Scholar
  24. 24.
    Milewski, R.: Fundamental theorem of algebra. Formalized Mathematics 9(3) (2001)Google Scholar
  25. 25.
    Narboux, J.: Mechanical Theorem Proving in Tarski’s Geometry. In: Automated Deduction in Geometry, vol. 4869 of Lecture Notes in Computer Science. Springer (2007)Google Scholar
  26. 26.
    Needham, T.: Visual Complex Analysis. Oxford University Press (1998)Google Scholar
  27. 27.
    Nipkow, T., Lawrence, C.P., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic vol. 2283 of LNCS. Springer (2002)Google Scholar
  28. 28.
    Penrose, R., Rindler, W.: Spinors and Space-Time Cambridge Monographs on Mathematical Physics. Cambridge University Press (1987)Google Scholar
  29. 29.
    Schwabhäuser, W., Szmielew, W., Tarski, A., Beeson, M.: Metamathematische Methoden in der Geometrie. Springer Verlag (1983)Google Scholar
  30. 30.
    Schwerdtfeger, H.: Geometry of Complex Numbers Dover Books on Mathematics. Dover Publications (1979)Google Scholar
  31. 31.
    Scott, P.: Mechanising Hilberts Foundations of Geometry in Isabelle. University of Edinburgh, Master’s thesis (2008)Google Scholar
  32. 32.
    Sternagel, C., Thiemann, R.: Executable matrix operations on matrices of arbitrary dimensions Archive of Formal Proofs (2010). Formal proof development. http://afp.sf.net/entries/Matrix.shtml
  33. 33.
    von Plato, J.: The axioms of constructive geometry. Ann. Pure Appl. Logic 76(2) (1995)Google Scholar
  34. 34.
    Wenzel M.: Isabelle/Isar — a generic framework for human-readable proof documents. In: From Insight to Proof — Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric vol. 10(23) University of Bialystok (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations