Automated generation of geometric theorems from images of diagrams

Article

Abstract

We propose an approach to generate geometric theorems from electronic images of diagrams automatically. The approach makes use of techniques of Hough transform to recognize geometric objects and their labels and of numeric verification to mine basic geometric relations. Candidate propositions are generated from the retrieved information by using six strategies and geometric theorems are obtained from the candidates via algebraic computation. Experiments with a preliminary implementation illustrate the effectiveness and efficiency of the proposed approach for generating nontrivial theorems from images of diagrams. This work demonstrates the feasibility of automated discovery of profound geometric knowledge from simple image data and has potential applications in geometric knowledge management and education.

Keywords

Theorem discovery Pattern recognition Image processing 

Mathematics Subject Classification (2010)

68T10 68T15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. Rev. Symbolic Logic 2(4), 700–768 (2009)Google Scholar
  2. 2.
    Balbiani, P., Fariñas del Cerro, L.: Diagrammatic reasoning in projective geometry. In: Ohlbach, H.J., Reyle, U.(eds.) Logic, Language and Reasoning. Trends in Logic, vol.5, pp. 99–114. Kluwer, Dordrecht (1999)Google Scholar
  3. 3.
    Botana, F.: A web-based intelligent system for geometric discovery. In: Computational Science – ICCS 2003, LNCS 2657, pp. 801–810. Springer, Berlin Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, T.C., Chung, K.L.: A new randomized algorithm for detecting lines. Real-Time Imaging 7(6), 473–481 (2001)CrossRefGoogle Scholar
  5. 5.
    Chen, T.C., Chung, K.L.: An efficient randomized algorithm for detecting circles. Comp. Vision Image Underst. 83(2), 172–191 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Chou, S.-C., Gao, X.-S.: Automated reasoning in geometry. In: Handbook of Automated Reasoning, vol. I, pp. 712–734. Elsevier, North Holland (2001)Google Scholar
  7. 7.
    Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A deductive database approach to automated geometry theorem proving and discovering. J. Autom. Reason. 25(3), 219–246 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chou, S.-C., Lin, D.: Wu’s method for automated geometry theorem proving and discovering. In: Gao, X.-S., Wang, D. (eds.) Mathematics Mechanization and Applications, pp. 125–146. Academic Press, London (2000)Google Scholar
  9. 9.
    Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. J. Autom. Reason. 43(2), 203–236 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM 15(1), 11–15 (1972)Google Scholar
  11. 11.
    Fernandes, L.A.F., Oliveira, M.M.: Real-time line detection through an improved Hough transform voting scheme. J. Pattern Recogn. Soc. 41(1), 299–314 (2005)CrossRefGoogle Scholar
  12. 12.
    Galambos, C., Kittler, J., Matas, J.: Gradient based progressive probabilistic Hough transform. Vision Image Signal Process. 148(3), 158–165 (2001)Google Scholar
  13. 13.
    Ida, T., Kasem, A., Ghourabi, F., Takahashi, H.: Morley’s theorem revisited: Origami construction and automated proof. J. Symb. Comput. 46(5), 571–583 (2011)Google Scholar
  14. 14.
    Kortenkamp, U.: Foundations of dynamic geometry. Ph.D. thesis ETH Zürich, pp. 60–72 (1999)Google Scholar
  15. 15.
    Magaud, N., Narboux, J., Schreck, P.: Formalizing projective plane geometry in Coq. In: Automated Deduction in Geometry, LNAI 6301, pp. 141–162. Springer, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive probabilistic Hough transform. Comp. Vision Image Underst. 78(1), 119–137 (2000)CrossRefGoogle Scholar
  17. 17.
    Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal canonical comprehensive Gröbner systems. In: Automated Deduction in Geometry, LNAI 4869, pp. 113–138. Springer, Berlin Heidelberg (2007)CrossRefMATHGoogle Scholar
  18. 18.
    Quaresma, P.: Thousands of geometric problems for geometric theorem provers (TGTP). In: Automated Deduction in Geometry, LNAI 6877, pp. 169–181. Springer, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Quaresma, P., Janičić, P.: GeoThms — A web system for Euclidean constructive geometry. Electron. Notes Theor. Comput. Sci. 174(2), 35–48 (2007)CrossRefMATHGoogle Scholar
  20. 20.
    Wang, D.: Elimination procedures for mechanical theorem proving in geometry. Ann. Math. Artif. Intell. 13(1–2), 1–24 (1995)CrossRefMATHGoogle Scholar
  21. 21.
    Wang, D.: Geometry machines: from AI to SMC. In: Calmet, J., Campbell, J.A., Pfalzgraf, J. (eds.) Artificial Intelligence and Symbolic Mathematical Computation. LNCS 1138, pp. 213–239. Springer, Berlin Heidelberg (1996)Google Scholar
  22. 22.
    Wang, D.: Elimination methods. Springer, Wien New York (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Wilson, S., Fleuriot, J.D.: Combining dynamic geometry, automated geometry theorem proving and diagrammatic proofs. In: Proceedings of the European Joint Conferences on Theory and Practice of Software (ETAPS), Satellite Workshop on User Interfaces for Theorem Provers (UITP), Edinburgh, UK (2005)Google Scholar
  24. 24.
    Wu, W.-t.: Mechanical theorem proving in geometries: Basic principles (translated from the Chinese by X. Jin and D. Wang). Springer, Wien New York (1994)CrossRefGoogle Scholar
  25. 25.
    Yano, K.: The famous theorems of geometry (Chinese edition, translated by Y. Chen). Shanghai Scientific and Technical Publishers (1986)Google Scholar
  26. 26.
    Ye, Z., Chou, S.-C., Gao, X.-S.: Visually dynamic presentation of proofs in plane geometry. J. Autom. Reason. 45(3), 213–241 (2010)Google Scholar
  27. 27.
    Yuen, H.K., Princen, J., Illingworth, J., Kittler, J.: Comparative study of Hough transform methods for circle finding. Image Vision Comput. 8(1), 71–77 (1990)CrossRefGoogle Scholar
  28. 28.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Comm. ACM 27(3), 236–239 (1984)Google Scholar
  29. 29.
    Epsilon, http://www-polsys.lip6.fr/wang/epsilon/. Accessed May 23 2014
  30. 30.
    Gaussian smoothing, http://en.wikipedia.org/wiki/Gaussian_blur. Accessed May 23 2014
  31. 31.
    GeoGebra, http://www.geogebra.org/cms/. Accessed May 23 2014
  32. 32.
    GEOTHER, http://www-polsys.lip6.fr/wang/GEOTHER/. Accessed May 23 2014
  33. 33.
    List of interactive geometry software, http://en.wikipedia.org/wiki/List_of_interactive_geometry_software. Accessed May 23 2014
  34. 34.
    OpenCV, http://opencv.org/. Accessed May 23 2014

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Software Development Environment, School of Computer Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Key Laboratory of Mathematics, Informatics and Behavioral Semantics, School of Mathematics and Systems ScienceBeihang UniversityBeijingChina
  3. 3.LMIB - SKLSDE - School of Mathematics and Systems ScienceBeihang UniversityBeijingChina
  4. 4.Centre National de la Recherche ScientifiqueParisFrance

Personalised recommendations