Guest editors’ preface to special issue on interval temporal logics

  • Ben Moszkowski
  • Dimitar Guelev
  • Martin Leucker


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification, Proceedings (Altrincham, UK, April, 1987), LNCS, vol. 398, pp. 62–74. Springer, Berlin (1989)Google Scholar
  3. 3.
    Barringer, H., Fisher, M., Gabbay, D., Gough, G.: Owens, R.: MetateM: A framework for programming in temporal logic. In: J. Bakker, W.P. Roever, G. Rozenberg (eds.) Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness (REX Workshop, 1989), no. 430 in LNCS, pp. 94–129. Springer (1990)Google Scholar
  4. 4.
    Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with temporal logic. Form. Asp. Comput 23(1), 91–112 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bresolin, D., Della Monica, D., Montanari, A., Sciavicco, G.: A tableau system for right propositional neighborhood logic over finite linear orders: an implementation. In: D. Galmiche, D. Larchey-Wendling (eds.) Proceedings of the 22th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2013), LNCS, vol. 8123, pp. 74–80. Springer (2013)Google Scholar
  6. 6.
    Dam, M.: Temporal logic, automata, and classical theories: An introduction. Notes for the 6th European Summer School in Logic, Language, and Information (ESSLLI 1994, Copenhagen) (1994). Accessed 19 December 2013
  7. 7.
    Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a journey. Bull. EATCS 105, 73–99 (2011)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Della Monica, D., Montanari, A., Sala, P.: The importance of the past in interval temporal logics: the case of propositional neighborhood logic. In: A. Artikis, R. Craven, N.K. Çiçekli, B. Sadighi, K. Stathis (eds.) Logic Programs, Norms and Action, LNCS, vol. 7360, pp. 79–102. Springer (2012)Google Scholar
  9. 9.
    Dutertre, B.: Complete proof systems for first order interval temporal logic. In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science (LICS ’95), pp. 36–43. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  10. 10.
    Fisher, M.: An Introduction to Practical Formal Methods Using Temporal Logic. Wiley (2011)Google Scholar
  11. 11.
    Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: A graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Goranko, V., Montanari, A.: Foreword to special issue on interval temporal logics and duration calculi. J. Appl. Non-Classical Log. 14(1–2), 7–8 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of propositional interval temporal logics and duration calculi. J. Appl. Non-Classical Log. 14(1–2), 9–54 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gordon, M.J.C.: From LCF to HOL: A short history. In: G. Plotkin, C. Stirling, M. Tofte (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 169–185. MIT Press, Cambridge (2000)Google Scholar
  15. 15.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hansen, M.R., Zhou, C.: Duration calculus: logical foundations. Form. Asp. Comput. 9(3), 283–330 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hoare, T.: Verification of fine-grain concurrent programs. Electr. Notes Theor. Comput. Sci. 209, 165–171 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    IEEE: Standard for the Functional Verification Language e, Standard 1647-2011. ANSI/IEEE, New York (2011)Google Scholar
  19. 19.
    ISO: ISO/IEC 9075-2:2011 Information technology — Database languages — SQL — Part 2: Foundation (SQL/Foundation). ISO, Geneva (2011)Google Scholar
  20. 20.
    Interval Temporal Logic website at De Montfort University, UK. Accessed 24 April 2013
  21. 21.
    Interval Temporal Logics website at the University of Udine, Italy. and Accessed 27 December 2013
  22. 22.
    Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM Trans. Progr. Lang. Syst. 5(4), 596–619 (1983)CrossRefzbMATHGoogle Scholar
  23. 23.
    Jones, C.B.: Balancing expressiveness in formal approaches to concurrency. Tech. Rep. 1394, University of Newcastle. Department of Computing Science (2013). Accessed 10 December 2013
  24. 24.
    Kröger, F., Merz, S.: Temporal Logic and State Systems. Springer (2008)Google Scholar
  25. 25.
    Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. ACM SIGMOD Rec. 41(3), 34–43 (2012)CrossRefGoogle Scholar
  26. 26.
    Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Professional (2002)Google Scholar
  27. 27.
    Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: R. Parikh (ed.) Logics of Programs, LNCS, vol. 193, pp. 196–218. Springer (1985)Google Scholar
  28. 28.
    Lomuscio, A., Michaliszyn, J.: An epistemic Halpern-Shoham logic. In: F. Rossi (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)Google Scholar
  29. 29.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifications. Springer, New York (1992)CrossRefGoogle Scholar
  30. 30.
    Moszkowski, B: Reasoning about digital circuits. Ph.D. thesis, Tech. Rep. STAN–CS–83–970. Department of Computer Science, Stanford University (1983)Google Scholar
  31. 31.
    Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press. Cambridge (1986)Google Scholar
  32. 32.
    Moszkowski, B.: A hierarchical completeness proof for propositional interval temporal logic with finite time. J. Appl. Non Class Log. 14(1–2), 55–104 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Müller-Olm, M.: A modal fixpoint logic with chop. In: C. Meinel, S. Tison (eds.) Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS 99), LNCS, vol. 1563, pp. 510–520. Springer (1999)Google Scholar
  34. 34.
    Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic Verification. Cambridge University Press. Cambridge (2008)Google Scholar
  35. 35.
    Roy, S., Chaochen, Z.: Notes on Neighbourhood Logic. Tech. Rep. 97. UNU-IIST, Macao (1997)Google Scholar
  36. 36.
    Venema, Y.: A modal logic for chopping intervals. J. Log. Comput. 1(4), 453–476 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Zhou, C.: Hansen, M.R.: Duration calculus: A Formal Approach to Real-Time Systems. Springer (2004)Google Scholar
  38. 38.
    Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ben Moszkowski
    • 1
  • Dimitar Guelev
    • 2
  • Martin Leucker
    • 3
  1. 1.Software Technology Research LaboratoryDe Montfort UniversityLeicesterUK
  2. 2.Department of Algebra and LogicInstitute of Mathematics and InformaticsSofiaBulgaria
  3. 3.Institute for Software Engineering and Programming LanguagesUniversity of LübeckLübeckGermany

Personalised recommendations