On 2D constrained discrete rigid transformations

  • Phuc Ngo
  • Yukiko Kenmochi
  • Nicolas Passat
  • Hugues Talbot


Rigid transformations are involved in a wide range of digital image processing applications. In such a context, they are generally considered as continuous processes, followed by a digitization of the results. Recently, rigid transformations on 2 have been alternatively formulated as a fully discrete process. Following this paradigm, we investigate – from a combinatorial point of view – the effects of pixel-invariance constraints on such transformations. In particular we describe the impact of these constraints on both the combinatorial structure of the transformation space and the algorithm leading to its generation.


Rigid transformation Discrete geometry Combinatorial structure Image processing Pixel-invariance constraints 

Mathematics Subject Classifications (2010)

05 51 52 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amintoosi, M., Fathy, M., Mozayani, N.: A fast image registration approach based on SIFT key-points applied to super-resolution. Imaging Sci. J. 60(4), 185–201 (2011)CrossRefGoogle Scholar
  2. 2.
    Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with rotations. Theor. Comput. Sci. 368(3), 196–204 (2006)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Andres, E.: The quasi-shear rotation. In: DGCI, Proceedings, Lecture Notes in Computer Science. vol. 1176, pp 307–314. Springer (1996)Google Scholar
  4. 4.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag, New York (2006)MATHGoogle Scholar
  5. 5.
    Chan, T.M.: On levels in arrangements of surfaces in three dimensions. In: SODA, Proceedings, pp. 232–240. ACM-SIAM (2005)Google Scholar
  6. 6.
    Coeurjolly, D., Blot, V., Jacob-Da Col, M.A.: Quasi-affine transformation in 3-D: theory and algorithms. In: IWCIA, Proceedings, Lecture Notes in Computer Science, vol. 5852, pp. 68–81. Springer (2009)Google Scholar
  7. 7.
    Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. In: STOC, Proceedings, pp. 389–403. ACM (1986)Google Scholar
  8. 8.
    Gose, E., Johnsonbaugh, R., Jost, S.: Pattern Recognition and Image Analysis. Prentice-Hall (1996)Google Scholar
  9. 9.
    Gribaa, N., Noblet, V., Khalifa, N., Faisan, S., Hamrouni, K.: Binary image registration based on geometric moments: application to the registration of 3D segmented CT head images. Int. J. Image Graph. 12(2) (2012)Google Scholar
  10. 10.
    Harris, C.: Tracking with rigid models. In: Blake, A., Yuille, A. (eds.) Active Vision, pp. 59–73. MIT Press, Cambridge (1993)Google Scholar
  11. 11.
    Hundt, C., Liśkiewicz, M.: On the complexity of affine image matching. In: STACS, Proceedings, Lecture Notes in Computer Science, vol. 4393, pp. 284–295. Springer (2007)Google Scholar
  12. 12.
    Hundt, C., Liśkiewicz, M.: Combinatorial bounds and algorithmic aspects of image matching under projective transformations. In: MFCS, Proceedings, Lecture Notes in Computer Science, vol. 5162, pp. 395–406. Springer (2008)Google Scholar
  13. 13.
    Hundt, C., Liśkiewicz, M., Ragnar, N.: A combinatorial geometrical approach to two-dimensional robust pattern matching with scaling and rotation. Theor. Comput. Sci. 410(51), 5317–5333 (2009)MATHCrossRefGoogle Scholar
  14. 14.
    Jacob, M.A., Andres, E.: On discrete rotations. In: DGCI International Conference on Discrete Geometry for Computer Imagery, Proceedings, pp. 161–174 (1995)Google Scholar
  15. 15.
    Maintz, J., Viergever, M.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)CrossRefGoogle Scholar
  16. 16.
    Matousek, J.: On directional convexity. Discret. Comput. Geom. 25(3), 389–403 (2001)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints. In: IWCIA, Proceedings, Lecture Notes in Computer Science, vol. 7655, pp. 234–248. Springer (2012)Google Scholar
  18. 18.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comp. Vision Image Underst. 117(4), 393–408 (2013)CrossRefGoogle Scholar
  19. 19.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Sufficient conditions for topological invariance of 2D digital images under rigid transformations. In: DGCI, Proceedings, Lecture Notes in Computer Science, vol. 7749, pp. 155–168. Springer (2013)Google Scholar
  20. 20.
    Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discret. Appl. Math. 147(2–3), 325–343 (2005)MATHCrossRefGoogle Scholar
  21. 21.
    Nouvel, B., Rémila, E.: Incremental and transitive discrete rotations. In: IWCIA, Proceedings, Lecture Notes in Computer Science, vol. 4040, pp. 199–213. Springer (2006)Google Scholar
  22. 22.
    Pennec, X., Ayache, N., Thirion, J.P.: Landmark-based registration using features identified through differential geometry. In: Bankman, I.N. (ed.) Handbook of Medical Imaging, chap. 31, pp. 499–513. Academic Press (2000)Google Scholar
  23. 23.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’État. Université Strasbourg, p. 1 (1991)Google Scholar
  24. 24.
    Richman, M.S.: Understanding discrete rotations. In: ICASSP, Proceedings, vol. 3, pp. 2057–2060. IEEE (1997)Google Scholar
  25. 25.
    Rosen, K.H.: Elementary Number Theory and its Applications, 3rd edn. Addison-Wesley (1992)Google Scholar
  26. 26.
    Sharir, M.: Recent developments in the theory of arrangements of surfaces. In: FSTTCS, Proceedings, Lecture Notes in Computer Science, vol. 1738, pp. 1–21. Springer (1999)Google Scholar
  27. 27.
    Thibault, Y.: Rotations in 2D and 3D discrete spaces. Ph.D. thesis, Université Paris-Est (2010)Google Scholar
  28. 28.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)CrossRefGoogle Scholar
  29. 29.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Phuc Ngo
    • 1
  • Yukiko Kenmochi
    • 1
  • Nicolas Passat
    • 2
  • Hugues Talbot
    • 1
  1. 1.Université Paris-Est, LIGMParisFrance
  2. 2.Université de Reims Champagne-Ardenne, CReSTICReimsFrance

Personalised recommendations