Contextual array grammars and array P systems

  • Henning Fernau
  • Rudolf Freund
  • Markus L. Schmid
  • K. G. Subramanian
  • Petra Wiederhold


Contextual array grammars, with selectors not having empty cells, are considered. A P system model, called contextual array P system, that makes use of array objects and contextual array rules, is introduced and its generative power for the description of picture arrays is examined. A main result of the paper is that there is a proper infinite hierarchy with respect to the classes of languages described by contextual array P systems. Such a hierarchy holds as well in the case when the selector is also endowed with the #−sensing ability.


Two-dimensional arrays Array grammars Contextual array rules ArrayP systems 

Mathematics Subject Classifications

68Q45 68Q05 68Q42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bottoni, P., Labella, A., Martín-Vide, C., Păun, G.: Rewriting P systems with conditional communication. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing, LNCS, vol. 2300, pp. 325–353. Springer, Berlin (2002)Google Scholar
  2. 2.
    Ceterchi, R., Mutyam, M., Păun, G., Subramanian, K.G.: Array-rewriting P systems. Nat. Comput. 2(3), 229–249 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G. (eds.): Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science, Newark (1994)zbMATHGoogle Scholar
  4. 4.
    Ehrenfeucht, A., Păun, G., Rozenberg, G.: Contextual grammars and formal languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. II, pp. 237–293. Springer, Berlin (1997)Google Scholar
  5. 5.
    Fernau, H., Freund, R.: Bounded parallelism in array grammars used for character recognition. In: Perner, P., Wang, P., Rosenfeld, A. (eds.) Advances in Structural and Syntactical Pattern Recognition (Proceedings of the SSPR’96), LNCS, vol. 1121, pp. 40–49. Springer, Berlin (1996)Google Scholar
  6. 6.
    Ferretti, C., Mauri, G., Paun, G., Zandron, C.: On three variants of rewriting P systems. Theor. Comput. Sci. 301(1–3), 201–215 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Freund, R.: Special variants of P systems inducing an infinite hierarchy with respect to the number of membranes. EATCS Bull. 75, 209–219 (2001)zbMATHGoogle Scholar
  8. 8.
    Freund, R., Păun, G., Rozenberg, G.: Chapter 8: contextual array grammars. In: Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications, Series in Machine Perception and Artificial Intelligence, vol. 66, pp. 112–136. World Scientific, Singapore (2007)Google Scholar
  9. 9.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer, Berlin (1997)Google Scholar
  10. 10.
    Ibarra, O.H.: On membrane hierarchy in P systems. Theor. Comput. Sci. 334(1–3), 115–129 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Klette, R., Rosenfeld, A. (eds.): Digital Geometry. Elsevier, New York (2004)zbMATHGoogle Scholar
  12. 12.
    Krithivasan, K., Mutyam, M.: Contextual P systems. Fundam. Inform. 49(1–3), 179–189 (2002)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pure Appl. 14, 1525–1534 (1969)zbMATHGoogle Scholar
  14. 14.
    Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Păun, G.: Marcus Contextual Grammar. Studies in Linguistics and Philosophy. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  16. 16.
    Păun, G.: Computing with Membranes: An Introduction. Springer, Berlin (2002)CrossRefGoogle Scholar
  17. 17.
    Rosenfeld, A. (ed.): Picture Languages. Academic, Orlando (1979)zbMATHGoogle Scholar
  18. 18.
    Rosenfeld, A., Kak, A.C. (eds.): Digital Picture Processing. Academic, Orlando (1982)Google Scholar
  19. 19.
    Rosenfeld, A., Siromoney, R.: Picture languages—a survey. Lang. Des. 1, 229–245 (1993)Google Scholar
  20. 20.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1997)Google Scholar
  21. 21.
    Salomaa, A.K.: Formal Languages. Academic, New York (1973)zbMATHGoogle Scholar
  22. 22.
    Subramanian, K.G.: P systems and picture languages. In: Durand-Lose, J.O., Margenstern, M. (eds.) Machines, Computations, and Universality, 5th International Conference, MCU, LNCS, vol. 4664, pp. 99–109. Springer, Berlin (2007)Google Scholar
  23. 23.
    Subramanian, K.G., Ali, R.M., Geethalakshmi, M., Nagar, A.K.: Pure 2D picture grammars and languages. Discret. Appl. Math. 157(16), 3401–3411 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Subramanian, K.G., Revathy, L., Siromoney, R.: Siromoney array grammars and applications. Int. J. Pattern Recognit. Artif. Intell. 3, 333–351 (1989)CrossRefGoogle Scholar
  25. 25.
    Subramanian, K.G., Venkat, I., Wiederhold, P.: A P system model for contextual array languages. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) Combinatorial Image Analysis—15th International Workshop, IWCIA, LNCS, vol. 7655, pp. 154–165. Springer, Berlin (2012)Google Scholar
  26. 26.
    Wang, P.S.P.: An application of array grammars to clustering analysis for syntactic patterns. Pattern Recognit. 17, 441–451 (1984)zbMATHCrossRefGoogle Scholar
  27. 27.
    Wang, P.S.P.: Array Grammars, Patterns and Recognizers. World Scientific, Singapore (1989)CrossRefGoogle Scholar
  28. 28.
    Zandron, C., Ferretti, C., Mauri, G.: Two normal forms for rewriting P systems. In: Margenstern, M., Rogozhin, Y. (eds.) Machines, Computations, and Universality, Third International Conference, MCU, LNCS, vol. 2055, pp. 153–164. Springer, Berlin (2001)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Henning Fernau
    • 1
  • Rudolf Freund
    • 2
  • Markus L. Schmid
    • 1
  • K. G. Subramanian
    • 3
  • Petra Wiederhold
    • 4
  1. 1.FB 4 – Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.Technische Universität Wien, Institut für ComputersprachenWienAustria
  3. 3.School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia
  4. 4.Depto. de Control AutomáticoCentro de Investigación y de Estudios Avanzados (CINVESTAV-IPN)MexicoMexico

Personalised recommendations