Combining formal concept analysis and translation to assign frames and semantic role sets to French verbs

  • Ingrid Falk
  • Claire Gardent


In Natural Language Processing, verb classifications have been shown to be useful both theoretically (to capture syntactic and semantic generalisations about verbs) and practically (to support factorisation and the supervised learning of shallow semantic parsers). Acquiring such classifications manually is both costly and errror prone however. In this paper, we present a novel approach for automatically acquiring verb classifications. The approach uses FCA to build a concept lattice from existing linguistic resources; and stability and separation indices to extract from this lattice those concepts that most closely capture verb classes. The approach is evaluated on an established benchmark and shown to differ from previous approaches and in particular, from clustering approaches, in two main ways. First, it supports polysemy (because a verb may belong to several classes). Second, it naturally provides a syntactic and semantic characterisation of the verb classes produced (by creating concepts which systematically associate verbs with their syntactic and semantic attributes).


Natural Language Processing Verb classification Concept selection indexes 

Mathematics Subject Classifications (2010)

06B99 68T50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics, Montreal, QC, Canada (1998)Google Scholar
  2. 2.
    Barbut, M., Monjardet, B.: Ordre et Classification. Hachette Université (1970)Google Scholar
  3. 3.
    Bédaride, P.: Raffinement du lexique des verbes français (Resource Refining: ≪ Les Verbes Français ≫) [in French]. In: Proceedings of the Joint Conference JEP-TALN-RECITAL 2012: TALN, vol. 2, pp. 155–168. ATALA/AFCP, Grenoble, France (2012)Google Scholar
  4. 4.
    Brew, C., Schulte im Walde, S.: Spectral clustering for German verbs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 117–124. Philadelphia, PA (2002)Google Scholar
  5. 5.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM TIST 2, (2011). Software available at
  6. 6.
    Cimiano, P., Staab, S., Tane, J.: Automatic acquisition of taxonomies from text: FCA meets NLP. In: Proceedings of the PKDD/ECML’03 International Workshop on Adaptive Text Extraction and Mining (ATEM), pp. 10–17 (2003)Google Scholar
  7. 7.
    Constant, M., Tolone, E.: A generic tool to generate a lexicon for nlp from lexicon-grammar tables (2010). arXiv:1005.5596
  8. 8.
    Falk, I., Francopoulo, G., Gardent, C., et al.: Evaluer Synlex. TALN 2007 (2007)Google Scholar
  9. 9.
    Falk, I.: Making use of existing lexical resources to build a Verbnet like classification of French verbs. PhD thesis, Université de Lorraine (2012)Google Scholar
  10. 10.
    Falk, I., Gardent, C., Lamirel, J.-C.: Classifying French verbs using French and English lexical resources. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL’12). Jeju, Republic of Corea (2012)Google Scholar
  11. 11.
    Fillmore, C.J.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in Linguistic Theory, pp. 1–88. Holt, Rinehart and Winston, New York (1968)Google Scholar
  12. 12.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin-Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gardent, C., Guillaume, B., Perrier, G., Falk, I., et al.: Extracting subcategorisation information from maurice gross’ grammar lexicon. ACSC 15(3), 309 (2005)zbMATHGoogle Scholar
  14. 14.
    Gross, M.: Méthodes en Syntaxe. Hermann, Paris (1975)Google Scholar
  15. 15.
    Boons, J.P., Guillet, A., Leclère, C.: La structure des phrases simples en français. Travaux du Laboratoire d’automatique documentaire et linguistique, vol. 2, p. 822. Droz, Geneva (1976)Google Scholar
  16. 16.
    Kipper-Schuler, K.: VerbNet: a broad-coverage, comprehensive verb lexicon. PhD thesis, University of Pennsylvania (2006)Google Scholar
  17. 17.
    Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) Formal Concept Analysis. Lecture Notes in Computer Science, vol. 5986, chapter 18, pp. 255–266. Springer, Berlin, Heidelberg (2010)Google Scholar
  18. 18.
    Korhonen, A., Briscoe, T.: Extended lexical-semantic classification of English verbs. In: Proceedings of the HLT-NAACL Workshop on Computational Lexical Semantics, CLS ’04, pp. 38–45. Association for Computational Linguistics, Stroudsburg, PA, USA (2004)Google Scholar
  19. 19.
    Kupść, A., Abeillé, A.: Growing TreeLex. In: Gelbkuh, A. (ed.) Computational Linguistics and Intelligent Text Processing. Lecture Notes in Computer Science, vol. 4919, pp. 28–39. Springer, Berlin/Heidelberg (2008)Google Scholar
  20. 20.
    Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. University of Chicago Press, Chicago/London (1993)Google Scholar
  22. 22.
    Mathieu, Y.: A computational semantic lexicon of French verbs of emotion. In: Shanahan, J.G., Qu, Y., Wiebe, J. (eds.) Computing Attitude and Affect in Text: Theory and Applications. The Information Retrieval Series, vol. 20, chapter 10, pp. 109–124. Springer-Verlag, Berlin/Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Merlo, P., Stevenson, S., Tsang, V., Allaria, G.: A multilingual paradigm for automatic verb classification. In: ACL, pp. 207–214 (2002)Google Scholar
  24. 24.
    Messiant, C.: A subcategorization acquisition system for French verbs. In: Proceedings of the ACL-08: HLT Student Research Workshop, pp. 55–60. Association for Computational Linguistics, Columbus, Ohio (2008)Google Scholar
  25. 25.
    Oishi, A., Matsumoto, Y.: Detecting the organization of semantic subclasses of Japanese verbs. IJCL 2(1), 65–89 (1997)CrossRefGoogle Scholar
  26. 26.
    Palmer, M., Kingsbury, P., Gildea, D.: The proposition bank: an annotated corpus of semantic roles. CL 31(1), 71–106 (2005)Google Scholar
  27. 27.
    Priss, U.: Linguistic applications of formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. Lecture Notes in Computer Science, vol. 3626, pp. 149–160. Springer, Berlin/Heidelberg (2005)Google Scholar
  28. 28.
    Randall, J.H.: Linking. Studies in Natural Language and Linguistic Theory. Springer, Dordrecht (2010)Google Scholar
  29. 29.
    Roth, C., Obiedkov, S.A., Kourie, D.G.: Towards concise representation for taxonomies of epistemic communities. In: Concept Lattices and their Applications (CLA’06), pp. 240–255 (2006)Google Scholar
  30. 30.
    Saint-Dizier, P.: Alternation and verb semantic classes for French: analysis and class formation. In: Predicative Forms in Natural Language and in Lexical Knowledge Bases. Kluwer Academic Publishers (1999)Google Scholar
  31. 31.
    Schulte im Walde, S.: Experiments on the automatic induction of German semantic verb classes. PhD thesis, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart (2003). Published as AIMS Report 9(2)Google Scholar
  32. 32.
    Schulte im Walde, S.: Experiments on the automatic induction of german semantic verb classes. CL 32(2), 159–194 (2006)Google Scholar
  33. 33.
    Sporleder, C.: A Galois lattice based approach to lexical inheritance hierarchy learning. In: 15th European Conference on Artificial Intelligence (ECAI’02): Workshop on Machine Learning and Natural Language Processing for Ontology Engineering. Lyon, France (2002)Google Scholar
  34. 34.
    Sun, L., Korhonen, A., Poibeau, T., Messiant, C.: Investigating the cross-linguistic potential of Verbnet: style classification. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10, pp. 1056–1064. Association for Computational Linguistics, Stroudsburg, PA (2010)Google Scholar
  35. 35.
    Sun, L., Korhonen, A., Poibeau, T., Messiant, C.: Investigating the cross-linguistic potential of VerbNet-style classification. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10, pp. 1056–1064. Association for Computational Linguistics, Stroudsburg, PA (2010)Google Scholar
  36. 36.
    Tolone, E.: Les Tables du Lexique–Grammaire au Format Tal. Actes de MajecSTIC 2009 (2009)Google Scholar
  37. 37.
    Valverde-Albacete, F.J.: Extracting frame-semantics knowledge using lattice theory. Int. J. Log. Comput. 18(3), 361–384 (2008)CrossRefMathSciNetGoogle Scholar
  38. 38.
    van den Eynde, K., Mertens, P.: La Valence: l’approche pronominale et son application au lexique verbal. J. Fr. Lang. Stud. 13, 63–104 (2003)CrossRefGoogle Scholar
  39. 39.
    van Rijsbergen, C.J.: Information Retrieval. Butterworth-Heinemann (1979)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.LORIA UMR 7503Vandoeuvre-lès-Nancy CedexFrance
  2. 2.CNRS/LORIA UMR 7503Vandoeuvre-lès-Nancy CedexFrance

Personalised recommendations