Preserving confidentiality while reacting on iterated queries and belief revisions

  • Joachim Biskup
  • Cornelia TadrosEmail author


In multiagent systems, agents interact and in particular exchange information to achieve a joint goal, e.g., arrange a meeting, negotiate a sales contract etc. An agent, as a rational reasoner, is able to incorporate new information into her belief about her environment (belief revision) or to share her belief with other agents (query answering). Our agent model is based on a common line of research where belief revision is seen as the process of nonmonotonic reasoning from the available information. Yet, such an agent might be interested to hide confidential parts of her belief from another requesting agent and, thus, must control the respective reaction to a revision or query request. As our first contribution, we define the confidentiality aims of the reacting agent and postulate the requesting agent’s capabilities in attacking these interests. In particular, we study an operator by means of which the requesting agent attempts to skeptically entail confidential beliefs of the reacting agent from observed reactions. This skeptical entailment operator is based on a class of nonmonotonic consequence relations such that the reacting agent’s reasoning is implemented as an instance of this class. As our second contribution, we give an algorithmic solution for the reacting agent to enforce her confidentiality aims. To this end, we show how skeptical entailment could be computed via deduction with respect to an appropriate axiomatization of the class of consequence relations on which skeptical entailment is based. In particular, we present control procedures using the skeptical entailment operator and prove that these procedures effectively enforce confidentiality by means of refusal even if the requesting agent also takes their execution into consideration (meta-inference).


Axiomatization Belief revision Confidential belief Confidentiality preservation Inference control Meta-inferences Multiagent system Nonmonotonic reasoning Query answering Skeptical entailment 

Mathematics Subject Classifications (2010)

68T27 68T37 03B60 03B70 03B80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anand, K.S., Goyal, M.: Strategic information management under leakage in a supply chain. Manag. Sci. 55(3), 438–452 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Banerjee, M., Dubois, D.: A simple modal logic for reasoning about revealed beliefs. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 805–816. Springer (2009)Google Scholar
  3. 3.
    Beierle, C., Kern-Isberner, G.: A conceptual agent model based on a uniform approach to various belief operations. In: Mertsching, B., Hund, M., Aziz, M.Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 273–280. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92(1–2), 259–276 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bezzazi, H., Makinson, D., Pérez, R.P.: Beyond rational monotony: some strong non-Horn rules for nonmonotonic inference relations. J. Log. Comput. 7(5), 605–631 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Biskup, J.: Usability confinement of server reactions: maintaining inference-proof client views by controlled interaction execution. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.) DNIS 2010. LNCS, vol. 5999, pp. 80–106. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Biskup, J.: Inference-usability confinement by maintaining inference-proof views of an information system. IJCSE 7(1), 17–37 (2012)CrossRefGoogle Scholar
  8. 8.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update transactions with forwarded refreshments. J. Comput. Secur. 19(3), 487–529 (2011)Google Scholar
  10. 10.
    Biskup, J., Kern-Isberner, G., Thimm, M.: Towards enforcement of confidentiality in agent interactions. In: Pagnucco, M., Thielscher, M. (eds.) NMR 2008, pp. 104–112. The University of New South Wales (2008)Google Scholar
  11. 11.
    Biskup, J., Tadros, C.: Policy-based secrecy in the Runs & Systems framework and controlled query evaluation. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) Short Paper of IWSEC 2010, pp. 60–77. IPSJ (2010)Google Scholar
  12. 12.
    Biskup, J., Tadros, C.: Inference-proof view update transactions with minimal refusals. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., De Capitani di Vimercati, S. (eds.) DPM 2011/SETOP 2011. LNCS, vol. 7122, pp. 104–121. Springer (2012)Google Scholar
  13. 13.
    Biskup, J., Tadros, C.: Revising belief without revealing secrets. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 51–70. Springer (2012)Google Scholar
  14. 14.
    Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf. Sec. 7(3), 199–217 (2008)CrossRefGoogle Scholar
  15. 15.
    Booth, R., Nittka, A.: Reconstructing an agent’s epistemic state from observations about its beliefs and non-beliefs. J. Log. Comput. 18(5), 755–782 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Brewka, G., Niemelä, I., Truszczyński, M.: Nonmonotonic reasoning. In: van Frank Harmelen, V.L., Porter, B. (eds.) Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 239–284. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  17. 17.
    Burmeister, B., Felicia Copaciu, M.A., Rimassa, G.: BDI-agents for agile goal-oriented business processes. In: Berger, M., Burg, B., Nishiyama, S. (eds.) AAMAS (Industry Track), pp. 37–44 (2008)Google Scholar
  18. 18.
    Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with beliefs. J. Comput. Secur. 17(5), 655–701 (2009)Google Scholar
  19. 19.
    Dubois, D.: Three scenarios for the revision of epistemic states. J. Log. Comput. 18(5), 721–738 (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Eiter, T., Lukasiewicz, T.: Complexity results for default reasoning from conditional knowledge bases. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000, pp. 62–73. Morgan Kaufmann, San Francisco (2000)Google Scholar
  21. 21.
    Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. J. ACM 48(4), 648–685 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Garcia, B.B., Brasil, Jr., S.M.: Towards default reasoning through MAX-SAT. In: Bittencourt, G., Ramalho, G. (eds.) SBIA 2002. LNCS, vol. 2507, pp. 52–62. Springer, Heidelberg (2002)Google Scholar
  23. 23.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableau calculi for KLM rational logic R. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA. LNCS, vol. 4160, pp. 190–202. Springer (2006)Google Scholar
  24. 24.
    Giordano, L., Gliozzi, V., Pozzato, G.L.: KLMLean 2.0: a theorem prover for KLM logics of nonmonotonic reasoning. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS, vol. 4548, pp. 238–244. Springer, Heidelberg (2007)Google Scholar
  25. 25.
    Goldszmidt, M., Pearl, J.: On the consistency of defeasible databases. Artif. Intell. 52(2), 121–149 (1992)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge, Massachusetts (2005)Google Scholar
  27. 27.
    Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur. 12(1), 5:1–5:47 (2008)CrossRefGoogle Scholar
  28. 28.
    Jennings, N.R., Norman, T.J., Faratin, P., O’Brien, P., Odgers, B.: Autonomous agents for business process management. Appl. Appl. Math. 14(2), 145–189 (2000)Google Scholar
  29. 29.
    Kern-Isberner, G.: Linking iterated belief change operations to nonmonotonic reasoning. In: Brewka, G., Lang, J. (eds.) KR 2008, pp. 166–176. AAAI Press, Menlo Park California (2008)Google Scholar
  30. 30.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Moinard, Y.: Plausibility structures for default reasoning. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI 2004, pp. 853–857. IOS Press, Amsterdam (2004)Google Scholar
  33. 33.
    Reeves, S., Clarke, M.: Logic for Computer Science. International Computer Science Series. Addison-Wesley, Wokingham, (1990)Google Scholar
  34. 34.
    Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Skyrms, B., Harper, W.L. (eds.) Irvine Conference on Probability and Causation. Causation in Decision, Belief Change, and Statistics, vol. II, pp. 105–134. Kluwer, Dordrecht (1988)Google Scholar
  35. 35.
    van Benthem, J.: Dynamic logic for belief revision. JANCL 17(2), 129–155 (2007)zbMATHGoogle Scholar
  36. 36.
    Wiese, L.: Keeping secrets in possibilistic knowledge bases with necessity-valued privacy policies. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 655–664. Springer, Heidelberg (2010)Google Scholar
  37. 37.
    Wooldridge, M.J.: An Introduction to Multiagent Systems. Wiley, Chichester (2009)Google Scholar
  38. 38.
    Zhang, D.Y., Zeng, Y., Wang, L., Li, H., Geng, Y.: Modeling and evaluating information leakage caused by inferences in supply chains. Comput. Ind. 62(3), 351–363 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations