Invariants for homology classes with application to optimal search and planning problem in robotics

  • Subhrajit Bhattacharya
  • David Lipsky
  • Robert Ghrist
  • Vijay Kumar


We consider planning problems on Euclidean spaces of the form ℝ, where \(\widetilde{\mathcal{O}}\) is viewed as a collection of obstacles. Such spaces are of frequent occurrence as configuration spaces of robots, where \(\widetilde{\mathcal{O}}\) represent either physical obstacles that the robots need to avoid (e.g., walls, other robots, etc.) or illegal states (e.g., all legs off-the-ground). As state-planning is translated to path-planning on a configuration space, we collate equivalent plannings via topologically-equivalent paths. This prompts finding or exploring the different homology classes in such environments and finding representative optimal trajectories in each such class. In this paper we start by considering the general problem of finding a complete set of easily computable homology class invariants for (N − 1)-cycles in (ℝ. We achieve this by finding explicit generators of the (N − 1) st de Rham cohomology group of this punctured Euclidean space, and using their integrals to define cocycles. The action of those dual cocycles on (N − 1)-cycles gives the desired complete set of invariants. We illustrate the computation through examples. We then show, for the case when N = 2, due to the integral approach in our formulation, this complete set of invariants is well-suited for efficient search-based planning of optimal robot trajectories with topological constraints. In particular, we show how to construct an ‘augmented graph’, \(\widehat{\mathcal{G}}\), from an arbitrary graph \(\mathcal{G}\) in the configuration space. A graph construction and search algorithm can hence be used to find optimal trajectories in different topological classes. Finally, we extend this approach to computation of invariants in spaces derived from (ℝby collapsing a subspace, thereby permitting application to a wider class of non-Euclidean ambient spaces.


Algebraic topolgy Differential topology Homology invariant Robot path planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baylis, W.E.: Clifford (Geometric) Algebras with Applications in Physics, Mathematics, and Engineering, 1st edn. Birkhuser Boston (1996)Google Scholar
  2. 2.
    Bhattacharya, S.: A template-based C+ + library for large-scale graph search and planning (2011). See
  3. 3.
    Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in search-based robot path planning. Auton. Robot. 33(3), 273–290 (2012). doi: 10.1007/s10514-012-9304-1 CrossRefGoogle Scholar
  4. 4.
    Bott, R., Tu, L.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics. Springer-Verlag, Heidelberg (1982)CrossRefGoogle Scholar
  5. 5.
    Bourgault, F., Makarenko, A.A., Williams, S.B., Grocholsky, B., Durrant-Whyte, H.F.: Information based adaptive robotic exploration. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, pp. 540–545 (2002)Google Scholar
  6. 6.
    Carlsson, G.: Topology and data. Bull. Amer. Math. Soc. 46, 255–308 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge, (2001)zbMATHGoogle Scholar
  8. 8.
    Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. In: AAAI’06: Proceedings of the 21st National Conference on Artificial intelligence. AAAI Press, pp. 942–947 (2006)Google Scholar
  9. 9.
    Derenick, J., Kumar, V., Jadbabaie, A.: Towards simplicial coverage repair for mobile robot teams. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 5472–5477 (2010)Google Scholar
  10. 10.
    Dold, A.: Lectures on Algebraic topology, Classics in Mathematics. 2nd edn. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction, Applied Mathematics. American Mathematical Society (2010)Google Scholar
  12. 12.
    Farber, M.: Topological complexity of motion planning. ArXiv Mathematics e-prints. arXiv: math/0111197 (2001)
  13. 13.
    Ferguson, D., Howard, T., Likhachev, M.: Motion planning in urban environments. J. Field Robot. 25, 939–960 (2008)CrossRefGoogle Scholar
  14. 14.
    Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover Publications, New York (1989)zbMATHGoogle Scholar
  15. 15.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.: Gnu Scientific Library: Reference Manual. Network Theory Ltd. (2003)Google Scholar
  16. 16.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45, 61–75 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ghrist, R.: Configuration spaces of graphs and robotics. In: Braids, Links, and Mapping Class Groups: The Proceedings of Joan Birman’s 70th Birthday, vol. 24, pp. 29–40. AMS/IP Studies in Mathematics (2001)Google Scholar
  18. 18.
    Ghrist, R., Koditschek, D.: Safe cooperative robot dynamics on graphs. SIAM J Contr Optim. 40, 1556–1575 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ghrist, R., LaValle, S.: Nonpositive curvature and pareto optimal motion planning. SIAM J. Contr. Optim. 45(5), 1697–1713 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ghrist, R., Muhammad, A: Coverage and hole-detection in sensor networks via homology. In: Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, 25–27 Apr 2005, pp. 254–260. UCLA, Los Angeles, California, USA, IEEE (2005)Google Scholar
  21. 21.
    Gottlieb, D.H.: Topology and the robot arm. Acta Appl. Math. 11, 117–121 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Grigoriev, D., Slissenko, A.: Polytime algorithm for the shortest path in a homotopy class amidst semi-algebraic obstacles in the plane. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ISSAC ’98, pp. 17–24. ACM: New York, NY, USA (1998)Google Scholar
  23. 23.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci, Cybern. SSC 4, 100–107 (1968)CrossRefGoogle Scholar
  24. 24.
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2001)Google Scholar
  25. 25.
    Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. Theory Appl. 4, 331–342 (1991)MathSciNetGoogle Scholar
  26. 26.
    Jeffrey, A.: Handbook of Mathematical Formulas and Integrals, 2nd edn. Academic Press (2000)Google Scholar
  27. 27.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, Springer (2004)Google Scholar
  28. 28.
    Koenig, S., Likhachev, M.: D* Lite. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI), pp. 476–483 (2002)Google Scholar
  29. 29.
    Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. tech. report (1998)Google Scholar
  30. 30.
    Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: Advances in Neural Information Processing Systems (NIPS) 16. Cambridge, MA: MIT Press (2003)Google Scholar
  31. 31.
    Lum, P.Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., Carlsson, G.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3 (2013).
  32. 32.
    McKeeman, W.M.: Algorithm 145: adaptive numerical integration by simpson’s rule. Commun. ACM 5, 604 (1962)CrossRefGoogle Scholar
  33. 33.
    Mrozek, M.: Topological dynamics: Rigorous numerics ia cubical homology. In: Zomorodian, A. (ed.) Advances in Applied and Computational Topology: Proc. Symp. Amer. Math. Soc., vol. 70, pp. 41–73 (2012)Google Scholar
  34. 34.
    Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill (1964)Google Scholar
  35. 35.
    Sanderson, C.: Armadillo: an open source c++ linear algebra library for fast prototyping and computationally intensive experiments. tech, report, NICTA (2010)Google Scholar
  36. 36.
    Schmitzberger, E., Bouchet, J., Dufaut, M., Wolf, D., Husson, R.: Capture of homotopy classes with probabilistic road map. In: International Conference on Intelligent Robots and Systems, vol. 3, pp. 2317–2322 (2002)Google Scholar
  37. 37.
    Seifert, H., Threlfall, W., Birman, J., Eisner, J.: Seifert and Threlfall, A textbook of Topology. Pure and Applied Mathematics, Academic Press (1980)Google Scholar
  38. 38.
    Stentz, A., Hebert, M.: A complete navigation system for goal acquisition in unknown environments. Auton. Robot. 2, 127–145 (1995)CrossRefGoogle Scholar
  39. 39.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics Intelligent Robotics and Autonomous Agents. The MIT Press (2005)Google Scholar
  40. 40.
    Wynn, P.: (1962) Acceleration techniques in numerical analysis, with particular reference to problems in one independent variable. In: Proc. IFIPS, pp. 149–156. Munich (1962)Google Scholar
  41. 41.
    Zhou, Y., Hu, B., Zhang, J.: Occlusion detection and tracking method based on bayesian decision theory. In: Chang, L.-W., Lie, W.-N. (eds.) Advances in Image and Video Technology. Lecture Notes in Computer Science, vol. 4319, pp. 474–482. Springer Berlin/Heidelberg (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Subhrajit Bhattacharya
    • 1
  • David Lipsky
    • 1
  • Robert Ghrist
    • 1
  • Vijay Kumar
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations