Fast algorithms for implication bases and attribute exploration using proper premises

  • Uwe Ryssel
  • Felix Distel
  • Daniel Borchmann


A central task in formal concept analysis is the enumeration of a small base for the implications that hold in a formal context. The usual stem base algorithms have been proven to be costly in terms of runtime. Proper premises are an alternative to the stem base. We present a new algorithm for the fast computation of proper premises. It is based on a known link between proper premises and minimal hypergraph transversals. Two further improvements are made, which reduce the number of proper premises that are obtained multiple times and redundancies within the set of proper premises. We have evaluated our algorithms within an application related to refactoring of model variants. In this application an implicational base needs to be computed, and runtime is more crucial than minimal cardinality. In addition to the empirical tests, we provide heuristic evidence that an approach based on proper premises will also be beneficial for other applications. Finally, we show how our algorithms can be extended to an exploration algorithm that is based on proper premises.


Formal concept analysis Proper premises 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babin, M., Kuznetsov, S.: Recognizing pseudo-intents is coNP-complete. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proc. of the 7th Int. Conf. on Concept Lattices and Their Applications, vol. 672. CEUR Workshop Proceedings (2010)Google Scholar
  2. 2.
    Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: ICDM, pp. 485–488. IEEE Computer Society (2003)Google Scholar
  3. 3.
    Berge, C.: Hypergraphs—combinatorics of finite sets. North-Holland, Amsterdam (1989)zbMATHGoogle Scholar
  4. 4.
    Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit implicational basis. Theor. Comput. Sci. 411(22–24), 2155–2166 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Borchmann, D.: Conexp-clj—a general-purpose tool for formal concept analysis. See
  6. 6.
    Borchmann, D.: A General Form of Attribute Exploration. LTCS-Report 13-02, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2013). See
  7. 7.
    Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Process. Lett. 10, 253–266 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Boros, E., Elbassioni, K., Makino, K.: On berge multiplication for monotone boolean dualization. In: Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part I, ICALP ’08, pp. 48–59. Springer-Verlag, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Cios, K.J., Kurgan, L.A., Goodenday, L.S.: UCI Machine Learning Repository: SPECT Heart Data Set (2001).
  10. 10.
    Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Sertkaya, B., Kwuida, L. (eds.) Proc. of the 8th Int. Conf. on Formal Concept Analysis. Lecture Notes in Artificial Intelligence, vol. 5986, pp. 124–137. Springer (2010)Google Scholar
  11. 11.
    Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA. Lecture Notes in Computer Science, vol. 5986, pp. 124–137. Springer (2010)Google Scholar
  12. 12.
    Distel, F., Borchmann, D.: Expected Numbers of Proper Premises and Concept Intents. Preprint, Institut für Algebra, TU Dresden (2011)Google Scholar
  13. 13.
    Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discret. Appl. Math. 159(6), 450–466 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowl. Inf. Syst. 8(2), 178–202 (2005)CrossRefGoogle Scholar
  15. 15.
    Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32, 514–537 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ganter, B.: Two Basic Algorithms in Concept Analysis. Preprint 831, Fachbereich Mathematik, TU Darmstadt, Darmstadt, Germany (1984)Google Scholar
  18. 18.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 95, 5–18 (1986)MathSciNetGoogle Scholar
  20. 20.
    Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph transversals, and machine learning (extended abstract). In: Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, PODS ’97, pp. 209–216. ACM, New York, NY, USA (1997). doi: 10.1145/263661.263684 CrossRefGoogle Scholar
  21. 21.
    Hagen, M.: Algorithmic and Computational Complexity Issues of MONET. Ph.D. thesis, Friedrich-Schiller-Universität Jena (2008)Google Scholar
  22. 22.
    Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal hypergraph generation. J. Graph Algorithms Appl. 9(2), 239–264 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base. J. Univers. Comput. Sci. 10(8), 927–933 (2004)zbMATHGoogle Scholar
  24. 24.
    Maier, D.: Theory of Relational Databases. Computer Science Pr (1983)Google Scholar
  25. 25.
    Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from relations. Data Knowl. Eng. 12(1), 83–99 (1994)CrossRefzbMATHGoogle Scholar
  26. 26.
    Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Ann. Math. Artif. Intell. 49(1–4), 77–99 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Reppe, H.: Attribute exploration using implications with proper premises. In: Eklund, P.W., Haemmerlé, O. (eds.) ICCS, Lecture Notes in Computer Science, vol. 5113, pp. 161–174. Springer (2008)Google Scholar
  28. 28.
    Rudolph, S.: Some notes on pseudo-closed sets. In: Kuznetsov, S.O., Schmidt, S. (eds.) Proc. of the 5th Int. Conf. on Formal Concept Analysis. Lecture Notes in Computer Science, vol. 4390, pp. 151–165. Springer (2007)Google Scholar
  29. 29.
    Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification in function-block-based models. In: Proc. of the 9th Int. Conf. on Generative Programming and Component Engineering, pp. 23–32. ACM (2010)Google Scholar
  30. 30.
    Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts. In: Proc. of the 15th Int. Software Product Line Conference, pp. 4:1–4:8. ACM (2011)Google Scholar
  31. 31.
    Schlimmer, J.: UCI Machine Learning Repository: 1984 United Stated Congressional Voting Records (1987).
  32. 32.
    Takata, K.: A worst-case analysis of the sequential method to list the minimal hitting sets of a hypergraph. SIAM J. Discret. Math. 21(4), 936–946 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Proceedings of the 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (1998)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Applied Computer ScienceTechnische Universität DresdenDresdenGermany
  2. 2.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations