Advertisement

Annals of Mathematics and Artificial Intelligence

, Volume 67, Issue 2, pp 123–163 | Cite as

Interchangeability with thresholds and degradation factors for Soft CSPs

  • S. BistarelliEmail author
  • B. Faltings
  • N. Neagu
Article
  • 112 Downloads

Abstract

Substitutability and interchangeability in constraint satisfaction problems (CSPs) have been used as a basis for search heuristics, solution adaptation and abstraction techniques. In this paper, we consider how the same concepts can be extended to soft constraint satisfaction problems (SCSPs). We introduce two notions: threshold α and degradation factor δ for substitutability and interchangeability, ( α substitutability/interchangeability and δ substitutability/interchangeabi-lity respectively). We show that they satisfy analogous theorems to the ones already known for hard constraints. In α interchangeability, values are interchangeable in any solution that is better than a threshold α, thus allowing to disregard differences among solutions that are not sufficiently good anyway. In δ interchangeability, values are interchangeable if their exchange could not degrade the solution by more than a factor of δ. We give efficient algorithms to compute ( δ / α )interchangeable sets of values for a large class of SCSPs, and show an example of their application. Through experimental evaluation based on random generated problem we measure first, how often neighborhood interchangeable values are occurring, second, how well they can approximate fully interchangeable ones, and third, how efficient they are when used as preprocessing techniques for branch and bound search.

Keywords

Constraint satisfaction Soft constraints Constraint optimization Interchangeability 

Mathematics Subject Classification (2010)

68T30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, B.W., Freuder, E.: Interchangeability preprocessing can improve forward checking search. In: Proc. of the 10th ECAI, pp. 28–30. Vienna, Austria (1992)Google Scholar
  2. 2.
    Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based CSPs and valued CSPs: basic properties and comparison. In: Over-Constrained Systems, number 1106 in LNCS. Springer-Verlag (1996)Google Scholar
  3. 3.
    Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based CSPs and Valued CSPs: frameworks, properties, and comparison. CONSTRAINTS: an international journal. Kluwer 4(3), 199–240 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bistarelli, S., Faltings, B., Neagu, N.: A definition of interchangeability for soft csps. In: Proc. of the Joint Workshop of the ERCIM Working Group on Constraints and the CologNet area on Constraint and Logic Programming on Constraint Solving and Constraint Logic Programming—Selected Papers, LNAI. Springer-Verlag (2002)Google Scholar
  5. 5.
    Bistarelli, S., Faltings, B., Neagu, N.: Interchangeability in soft csps. In: Proc. of the 8th CP-2002, LNCS. Springer-Verlag (2002)Google Scholar
  6. 6.
    Bistarelli, S.: Soft Constraint Solving and programming: a general framework. PhD thesis, Dipartimento di Informatica, Università di Pisa, Italy. TD-2/01 (2001)Google Scholar
  7. 7.
    Bistarelli, S., Montanari, U., Rossi, F.: Constraint solving over semirings. In: Proc. IJCAI95. Morgan Kaufman, San Francisco, CA, USA (1995)Google Scholar
  8. 8.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint logic programming: syntax and semantics. ACM Trans. Program. Lang. Syst. 23, 1–29 (2001)CrossRefGoogle Scholar
  10. 10.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. In: Proc. ESOP, April 6–14, 2002, LNCS. Springer-Verlag, Grenoble, France (2002)Google Scholar
  11. 11.
    Choueiry, B., Faltings, B., Weigel, R.: Abstraction by Interchangeability in Resource Allocation. In: Proc. of the 14 th IJCAI-95, pp. 1694–1701. Montreal, Canada (1995)Google Scholar
  12. 12.
    Choueiry, B.Y.: Abstraction methods for resource allocation. PhD thesis, EPFL PhD Thesis no. 1292 (1994)Google Scholar
  13. 13.
    Choueiry, B.Y., Noubir, G.: On the computation of local interchangeability in discrete constraint satisfaction problems. In: AAAI/IAAI, pp. 326–333 (1998)Google Scholar
  14. 14.
    Choueiry, B.Y., Noubir, G.: On the computation of local interchangeability in discrete constraint satisfaction problems. In: Proc. of AAAI-98, pp. 326–333. Madison, Wiscowsin (1998)Google Scholar
  15. 15.
    Cooper, M.: Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets Syst. 134, 311–342 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 1131–1136. IEEE (1993)Google Scholar
  17. 17.
    Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilistic approach. In: Proc. European Conference on Symbolic and Qualitative Approaches to Reasoning and Uncertainty (ECSQARU), LNCS, vol. 747, pp. 97–104. Springer-Verlag (1993)Google Scholar
  18. 18.
    Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction problems. In: Proc. of AAAI-91, pp. 227–233. Anaheim, CA (1991)Google Scholar
  19. 19.
    Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Art. Intelligence 58, 21–70 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Haselbock, A.: Exploiting interchangeabilities in constraint satisfaction problems. In: Proc. of the 13th IJCAI, pp. 282–287 (1993)Google Scholar
  21. 21.
    Neagu, N.: Studying interchangeability in constraint satisfaction problems. In: Van Hentenryck, P. (ed.) CP, Lecture Notes in Computer Science, vol. 2470, pp. 787–788. Springer (2002)Google Scholar
  22. 22.
    Neagu, N.: Interchangeability in constraint satisfaction problems. PhD thesis, Ecole polytechnique fédérale de Lausanne EPFL, Lausanne (2003)Google Scholar
  23. 23.
    Neagu, N., Faltings, B.: Constraint Satisfaction for Case Adaptation. In: Proc. of the Workshop on Case Adaptation in ICCBR-99. Munich (1999)Google Scholar
  24. 24.
    Neagu, N., Faltings, B.: Exploiting interchangeabilities for case adaptation. In: Proc. of the 4th ICCBR01 (2001)Google Scholar
  25. 25.
    Rossi, F., Pilar, I.: Abstracting Soft Constraints: Some Experimental Results. In: Joint Annual ERCIM/CoLogNet Workshop on Constraint and Logic Programming. Budapest, Hungary (2003)Google Scholar
  26. 26.
    Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proc. 3rd IEEE International Conference on Fuzzy Systems, pp. 1263–1268 (1994)Google Scholar
  27. 27.
    Schiex, T.: Possibilistic constraint satisfaction problems, or “how to handle soft constraints?”. In: Proc. 8th Conf. of Uncertainty in AI, pp. 269–275 (1992)Google Scholar
  28. 28.
    Schiex, T., Fargier, H., Verfaille, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proc. IJCAI95, pp. 631–637. Morgan Kaufmann, San Francisco, CA, USA (1995)Google Scholar
  29. 29.
    Weigel, R., Faltings, B.: Interchangeability for case adaptation in configuration problems. In: Proc. of the AAAI98 Spring Symposium on Multimodal Reasoning, TR SS-98-04. Stanford, CA (1998)Google Scholar
  30. 30.
    Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artif. Intell. 115, 257–289 (1999)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Istituto di Informatica e Telematica, CNRPisaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di PerugiaPerugiaItaly
  3. 3.Ecole Polytechnique Fédérale de Lausanne (EPFL)School of Computer and Communication SciencesLausanneSwitzerland
  4. 4.Claude Delorme Research CenterAir LiquideJOUY en JOSASFrance

Personalised recommendations