Advertisement

Query answering under probabilistic uncertainty in Datalog+ / − ontologies

  • Georg Gottlob
  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Gerardo I. Simari
Article

Abstract

The recently introduced Datalog+ / − family of ontology languages is especially useful for representing and reasoning over lightweight ontologies, and is set to play a central role in the context of query answering and information extraction for the Semantic Web. Recently, it has become apparent that it is necessary to develop a principled way to handle uncertainty in this domain. In addition to uncertainty as an inherent aspect of the Web, one must also deal with forms of uncertainty due to inconsistency and incompleteness, uncertainty resulting from automatically processing Web data, as well as uncertainty stemming from the integration of multiple heterogeneous data sources. In this paper, we take an important step in this direction by developing a probabilistic extension of Datalog+ / −. This extension uses Markov logic networks as the underlying probabilistic semantics. Here, we focus especially on scalable algorithms for answering threshold queries, which correspond to the question “what is the set of all ground atoms that are inferred from a given probabilistic ontology with a probability of at least p?”. These queries are especially relevant to Web information extraction, since uncertain rules lead to uncertain facts, and only information with a certain minimum confidence is desired. We present several algorithms, namely a basic approach, an anytime one, and one based on heuristics, which is guaranteed to return sound results. Furthermore, we also study inconsistency in probabilistic Datalog+ / − ontologies. We propose two approaches for computing preferred repairs based on two different notions of distance between repairs, namely symmetric and score-based distance. We also study the complexity of the decision problems corresponding to computing such repairs, which turn out to be polynomial and NP-complete in the data complexity, respectively.

Keywords

Datalog+/− ontologies Reasoning under uncertainty Inconsistency management Markov logic networks 

Mathematics Subject Classifications (2010)

68T30 68T37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings PODS-1999, pp. 68–79. ACM Press (1999)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  3. 3.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14(1), 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. In: Proc. of LPNMR, pp. 21–33 (2004)Google Scholar
  5. 5.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Proceedings ICALP-1981. LNCS, vol. 115, pp. 73–85. Springer (1981)Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284(5), 34–43 (2002)CrossRefGoogle Scholar
  7. 7.
    Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model and effective heuristic for repairing constraints by value modification. In: Proceedings SIGMOD-2005, pp. 143–154. ACM Press (2005)Google Scholar
  8. 8.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. In: Proceedings KR-2008, pp. 70–80. AAAI Press (2008)Google Scholar
  9. 9.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)CrossRefGoogle Scholar
  10. 10.
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+ / −: a family of logical knowledge representation and query languages for new applications. In: Proceedings LICS-2010, pp. 228–242. IEEE Computer Society (2010)Google Scholar
  11. 11.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)CrossRefGoogle Scholar
  12. 12.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings STOC-1977, pp. 77–90. ACM Press (1977)Google Scholar
  13. 13.
    Chomicki, J.: Consistent query answering: five easy pieces. In: Proceedings ICDT-2007. LNCS, vol. 4353, pp. 1–17. Springer (2007)Google Scholar
  14. 14.
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proceedings PODS-2008, pp. 149–158. ACM Press (2008)Google Scholar
  15. 15.
    Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer (2009)Google Scholar
  16. 16.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: Proceedings ICDE-2011, pp. 315–326. IEEE Computer Society (2011)Google Scholar
  18. 18.
    Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering threshold queries in probabilistic Datalog+ / − ontologies. In: Proceedings SUM-2011. LNCS, vol. 6929, pp. 401–414. Springer (2011)Google Scholar
  19. 19.
    Hansson, S.O.: Kernel contraction. J. Symb. Log. 59(3), 845–859 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hansson, S.O.: Semi-revision. J. Appl. Non-Class. Log. 7(2), 151–175 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Heinsohn, J.: Probabilistic description logics. In: Proceedings UAI-1994, pp. 311–318 (1994)Google Scholar
  22. 22.
    Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: A probabilistic database management system. In: Proceedings SIGMOD-2009, pp. 1071–1074. ACM Press (2009)Google Scholar
  23. 23.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Koch, C., Olteanu, D., Re, C., Suciu, D.: Probabilistic Databases. Morgan-Claypool (2011)Google Scholar
  25. 25.
    Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: a tractable probabilistic description logic. In: Proceedings AAAI-1997, pp. 390–397. AAAI Press / MIT Press (1997)Google Scholar
  26. 26.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Proceedings RR-2010. LNCS, vol. 6333, pp. 103–117. Springer (2010)Google Scholar
  27. 27.
    Lopatenko, A., Bertossi, L.E.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: Proceedings ICDT-2007. LNCS, vol. 4353, pp. 179–193. Springer (2007)Google Scholar
  28. 28.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly coupled probabilistic description logics. In: Proc. of UAI, pp. 554–563. AUAI (2012)Google Scholar
  30. 30.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. J. Web Sem. 6(4), 291–308 (2008)CrossRefGoogle Scholar
  31. 31.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)CrossRefGoogle Scholar
  32. 32.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language: Semantics and Abstract Syntax. W3C Recommendation (2004). http://www.w3.org/TR/owl-semantics/
  33. 33.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)Google Scholar
  34. 34.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1/2), 107–136 (2006)CrossRefGoogle Scholar
  37. 37.
    Schlobach, S.: Diagnosing terminologies. In: Proceedings AAAI-2005, pp. 670–675. AAAI Press / MIT Press (2005)Google Scholar
  38. 38.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings IJCAI-2003, pp. 355–362. Morgan Kaufmann (2003)Google Scholar
  39. 39.
    Staworko, S., Chomicki, J.: Consistent query answers in the presence of universal constraints. Inf. Syst. 35(1), 1–22 (2010)CrossRefGoogle Scholar
  40. 40.
    Yang, Y., Calmet, J.: OntoBayes: an ontology-driven uncertainty model. In: Proceedings IAWTIC-2005, pp. 457–463. IEEE Computer Society (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Georg Gottlob
    • 1
    • 2
  • Thomas Lukasiewicz
    • 1
  • Maria Vanina Martinez
    • 1
  • Gerardo I. Simari
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Oxford-Man Institute of Quantitative FinanceUniversity of OxfordOxfordUK

Personalised recommendations