Advertisement

Relational concept analysis: mining concept lattices from multi-relational data

  • Mohamed Rouane-Hacene
  • Marianne Huchard
  • Amedeo Napoli
  • Petko Valtchev
Article

Abstract

The processing of complex data is admittedly among the major concerns of knowledge discovery from data (kdd). Indeed, a major part of the data worth analyzing is stored in relational databases and, since recently, on the Web of Data. This clearly underscores the need for Entity-Relationship and rdf compliant data mining (dm) tools. We are studying an approach to the underlying multi-relational data mining (mrdm) problem, which relies on formal concept analysis (fca) as a framework for clustering and classification. Our relational concept analysis (rca) extends fca to the processing of multi-relational datasets, i.e., with multiple sorts of individuals, each provided with its own set of attributes, and relationships among those. Given such a dataset, rca constructs a set of concept lattices, one per object sort, through an iterative analysis process that is bound towards a fixed-point. In doing that, it abstracts the links between objects into attributes akin to role restrictions from description logics (dls). We address here key aspects of the iterative calculation such as evolution in data description along the iterations and process termination. We describe implementations of rca and list applications to problems from software and knowledge engineering.

Keywords

Formal concept analysis Relational data Relational concept analysis Concept lattices  Knowledge representation Description logics 

Mathematics Subject Classifications (2010)

06-A99 06-B99 68-R99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adda, M., Valtchev, P., Djeraba, C., Missaoui, R.: Toward recommendation based on ontology-powered web-usage mining. IEEE Internet Computing 11(4):45–52 (2007)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th Intl. Conf. on Data Engineering (ICDE’95), pp. 3–14. IEEE Computer Society (1995)Google Scholar
  3. 3.
    Arévalo, G., Falleri, J.-R., Huchard, M., Nebut, C.: Building abstractions in class models: formal concept analysis in a model-driven approach. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) Proc. of the 9th Intl. Conf. MoDELS. LNCS, vol. 4199, pp. 513–527. Springer (2006)Google Scholar
  4. 4.
    Azmeh, Z., Driss, M., Hamoui, F., Huchard, M., Moha, N., Tibermacine, C.: Selection of composable web services driven by user requirements. In: ICWS, pp. 395–402. IEEE Computer Society (2011)Google Scholar
  5. 5.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  6. 6.
    Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et Combinatoire, vol. 2. Hachette (1970)Google Scholar
  7. 7.
    Belohlavek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bendaoud, R., Napoli, A., Toussaint, Y.: Formal concept analysis: a unified framework for building and refining ontologies. In: Gangemi, A., Euzenat, J. (eds.) Knowledge Engineering: Practice and Patterns, Proc. of the 16th Intl. Conf. EKAW, LNCS 5268, pp. 156–171 (2008)Google Scholar
  9. 9.
    Cook, D., Holder, L.: Mining Graph Data. Wiley-Interscience (2006)Google Scholar
  10. 10.
    De Raedt, L.: Logical and Relational Learning (Cognitive Technologies), 1st edn. Springer (2008)Google Scholar
  11. 11.
    Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)CrossRefGoogle Scholar
  12. 12.
    Džeroski, S.: Multi-relational data mining: an introduction. SIGKDD Explor. Newsl. 5, 1–16 (2003)CrossRefGoogle Scholar
  13. 13.
    Džeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer (2001)Google Scholar
  14. 14.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)Google Scholar
  15. 15.
    Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal concept analysis and logical information systems. In: Mugnier, M.-L., Dau, F., Stumme, G. (eds.) Proc. of the 13th Intl. Conf. on Conceptual Structures (ICCS’05), Kassel, Germany. LNCS, vol. 3596, pp. 166–180. Springer (2005)Google Scholar
  16. 16.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer (1999)Google Scholar
  17. 17.
    Huchard, M., Rouane-Hacene, M., Roume, C., Valtchev, P.: Relational concept discovery in structured datasets. Ann. Math. Artif. Intell. 49(1–4), 39–76 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Zytkow, J.M., Rauch, J. (eds.) Proc. of the Third European Conf. PKDD’99, Prague, Czech Republic, vol. 1704, pp. 384–391 (1999)Google Scholar
  19. 19.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing the performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78, 203–250 (2010)CrossRefGoogle Scholar
  21. 21.
    Liquière, M., Sallantin, J.: Structural machine learning with Galois lattice and graphs. In: Proc. of the 15th Intl. Conf. on Machine Learning (ICML’98), pp. 305–313 (1998)Google Scholar
  22. 22.
    Mann, R.D., Andrews, E.B. (eds.): Pharmacovigilance. Wiley (2002)Google Scholar
  23. 23.
    Moha, N., Rouane-Hacene, M., Valtchev, P., Guéhéneuc, Y.-G.: Refactorings of design defects using relational concept analysis. In: Medina, R., Obiedkov, S. (eds.) Proc. of the 6th Intl. Conf. on Formal Concept Analysis (ICFCA’08). LNCS, vol. 4933, pp. 289–304. Springer (2008)Google Scholar
  24. 24.
    Prediger, S., Stumme, G.: Theory-driven logical scaling. In: Proc. 6th Intl. Workshop Knowledge Representation Meets Databases, Heidelberg. CEUR Workshop Proc., pp. 46–49 (1999)Google Scholar
  25. 25.
    Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Proc. of the 7th Intl. Conf. on Conceptual Structures (ICCS’99), pp. 401–414. Springer (1999)Google Scholar
  26. 26.
    Priss, U.: Efficient implementation of semantic relations in lexical databases. Comput. Intell. 15, 79–87 (1999)CrossRefGoogle Scholar
  27. 27.
    Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining formal concept analysis and description logics for mining relational data. In: Kuznetsov, S., Schmidt, S. (eds.) Proc. of the 5th Intl. Conf. on Formal Concept Analysis (ICFCA’07). LNCS, vol. 4390, pp. 51–65. Springer (2007)Google Scholar
  28. 28.
    Rouane-Hacene, M., Valtchev, P., Nkambou, R.: Supporting ontology design through large-scale FCA-based ontology restructuring. In: Proc. of the 19th International Conference on Conceptual Structures, ICCS 2011—Conceptual Structures for Discovering Knowledge—, Derby, UK, 25–29 July 2011, pp. 257–269 (2011)Google Scholar
  29. 29.
    Rudolph, S.: Exploring relational structures via FLE. In: Pfeiffer, H.D., Wolff, K.E., Delugach, H.S. (eds.) Proc. of the 12th Intl. Conf. on Conceptual Structures, ICCS 2004, Huntsville (AL). LNAI, vol. 3127, pp. 196–212. Springer, Berlin (2004)Google Scholar
  30. 30.
    Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.A.: Generation of operational transformation rules from examples of model transformations. In: France, R., Kazmeier, J., Breu, R., Atkinson, C. (eds.) Proc. 15th Intl. Conf. MODELS’12, Innsbruck (AT). Lecture Notes in Computer Science, vol. 7590, pp. 546–561. Springer (2012)Google Scholar
  31. 31.
    Shi, L., Toussaint, Y., Napoli, A., Blansché, A.: Mining for reengineering: an application to semantic wikis using formal and relational concept analysis. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Pan, J., De Leenheer, P. (eds.) Proc. of the 8th Extended Semantic Web Conf. (ESWC’11). LNCS, vol. 6644, pp. 421–435. Springer (2011)Google Scholar
  32. 32.
    Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proc. of the 21st Intl. Conf. on Very Large Databases (VLDB’95), Zurich (CH) (1995)Google Scholar
  33. 33.
    Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Math. 256(3), 801–829 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Valtchev, P., Rouane-Hacene, M., Missaoui, R.: A generic scheme for the design of efficient on-line algorithms for lattices. In: de Moor, A., Lex, W., Ganter, B. (eds.) Proc. of the 11th Intl. Conf. on Conceptual Structures (ICCS’03). LNCS, vol. 2746, pp. 282–295. Springer (2003)Google Scholar
  35. 35.
    Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge discovery and data mining: the new challenges. In: Eklund, P. (ed.) Proc. of the 2nd Intl. Conf. on Formal Concept Analysis (ICFCA’04), Sydney (AU). LNCS, vol. 2961, pp. 352–371. Springer (2004)Google Scholar
  36. 36.
    Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explor. Newsl. 5(1), 59–68 (2003)CrossRefGoogle Scholar
  37. 37.
    Wille, R.: Restructuring the lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mohamed Rouane-Hacene
    • 1
  • Marianne Huchard
    • 2
  • Amedeo Napoli
    • 3
  • Petko Valtchev
    • 1
  1. 1.Dépt. InformatiqueUQÀMMontréalCanada
  2. 2.LIRMM (CNRS – Université de Montpellier)Montpellier Cedex 5France
  3. 3.LORIA (CNRS – INRIA – Université de Lorraine)Vandœuvre-lès-NancyFrance

Personalised recommendations