Embedding and automating conditional logics in classical higher-order logic

  • Christoph BenzmüllerEmail author
  • Dov Gabbay
  • Valerio Genovese
  • Daniele Rispoli


A sound and complete embedding of conditional logics into classical higher-order logic is presented. This embedding enables the application of off-the-shelf higher-order automated theorem provers and model finders for reasoning within and about conditional logics.


Conditional logics Classical higher-order logic Semantic embedding Automated theorem proving 

Mathematics Subject Classifications (2010)

03B15 03B20 03B35 03B60 68T15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, P.B.: General models and extensionality. J. Symb. Log. 37, 395–397 (1972)zbMATHCrossRefGoogle Scholar
  2. 2.
    Andrews, P.B.: Church’s type theory. In: The Stanford Encyclopedia Of Philosophy (2009)Google Scholar
  3. 3.
    Benzmüller, C.: Verifying the modal logic cube is an easy task (for higher-order automated reasoners). In: Verification, Induction, Termination Analysis—Festschrift C. Walther. LNCS, vol. 6463, pp. 117–128. Springer (2010)Google Scholar
  4. 4.
    Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18, 881–892 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell. 68(1), 87–154 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)zbMATHCrossRefGoogle Scholar
  7. 7.
    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Crocco, G., Lamarre, P.: On the connection between non-monotonic inference systems and conditional logics. In: KR, pp. 565–571 (1992)Google Scholar
  9. 9.
    Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: A constructive conditional logic for access control: a preliminary report. In: Proc. of ECAI 2010, pp. 1073–1074 (2010)Google Scholar
  10. 10.
    Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)zbMATHCrossRefGoogle Scholar
  11. 11.
    Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: CondLean and GoalDuck. J. Appl. Non-class. Log. 18(4), 427–473 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. 8(4) (2007)Google Scholar
  13. 13.
    Pozzato, G.L.: Conditional and Preferential Logics: Proof Methods and Theorem Proving. Frontiers in Artificial Intelligence and Applications, vol. 208. IOS press (2010)Google Scholar
  14. 14.
    Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cautious monotonicity. In: Proc. of ECAI 2010, pp. 707–712 (2010)Google Scholar
  15. 15.
    Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, American Philosophical Quarterly, Monograph Series no.2, pp. 98–112. Blackwell, Oxford (1968)Google Scholar
  16. 16.
    Sutcliffe, G.: The tptp problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Form. Reason. 3(1), 1–27 (2010)zbMATHGoogle Scholar
  18. 18.
    Raths, T., Otten, J.: Implementing and evaluating theorem provers for first-order modal logics. In: Giese, M. (ed.) Proceedings of FTP 2011—International Workshop on First-Order Theorem Proving, Bern, Switzerland, 4 Jul 2011. CEUR Workshop Proceedings, 2011. See also the online results at

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christoph Benzmüller
    • 1
    Email author
  • Dov Gabbay
    • 2
  • Valerio Genovese
    • 3
    • 4
  • Daniele Rispoli
    • 4
  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.King’s College LondonLondonUK
  3. 3.University of LuxembourgWalferdangeLuxembourg
  4. 4.University of TorinoTorinoItaly

Personalised recommendations