Advertisement

Semantical investigations into nonmonotonic and probabilistic logics

  • Christoph BeierleEmail author
  • Gabriele Kern-Isberner
Article

Abstract

Different forms of semantics have been proposed for conditionals of the form “Usually, if A then B”, ranging from quantitative probability distributions to qualitative approaches using plausibility orderings, possibility distributions, or conditional objects. Atomic-bound systems, also called big-stepped probabilities, allow qualitative reasoning with probabilities, aiming at bridging the gap between qualitative and quantitative argumentation and providing a model for the nonmonotonic reasoning system P. By using Goguen and Burstall’s notion of institutions for the formalization of logical systems, we elaborate precisely which formal connections exist among big-stepped probabilities, standard probabilities, and qualitative logics. Based on our investigations, we also develop two variants of conditional objects, one of them having a simpler semantics while still providing a model for system P.

Keywords

Conditional logic Probabilistic logic Qualitative logic Big-stepped probability Conditional object Institution Institution morphism 

Mathematics Subject Classifications (2010)

68T27 68T30 68T37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, E.: The Logic of Conditionals. Reidel, Dordrecht (1975)zbMATHGoogle Scholar
  2. 2.
    Arló Costa, H., Parikh, R.: Conditional probability and defeasible inference. J. Philos. Logic 34, 97–119 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beierle, C., Kern-Isberner, G.: Using institutions for the study of qualitative and quantitative conditional logics. In: JELIA’02, LNCS 2424, pp. 161–172. Springer (2002)Google Scholar
  4. 4.
    Beierle, C., Kern-Isberner, G.: Looking at probabilistic conditionals from an institutional point of view. In: Conditionals, Information, and Inference, LNCS 3301, pp. 162–179. Springer (2005)Google Scholar
  5. 5.
    Beierle, C., Kern-Isberner, G.: Formal similarities and differences among qualitative conditional semantics. Int. J. Approx. Reason. 50(9), 1333–1346 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Beierle, C., Kern-Isberner, G.: The relationship of the logic of big-stepped probabilities to standard probabilistic logics. In: Link, S., Prade, H. (eds.) Foundations of Information and Knowledge Systems (FoIKS 2010), LNCS, vol. 5956, pp. 191–210. Springer (2010)Google Scholar
  7. 7.
    Beierle, C., Kern-Isberner, G.: Conditional objects revisited: variants and model translations. In: Youngblood, G.M., McCarthy, P.M. (eds.) Proceedings of the 25th International FLAIRS Conference, (FLAIRS-25), pp. 561–564. AAAI Press, Menlo Park (2012)Google Scholar
  8. 8.
    Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92, 259–276 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge bases. J. Log. Comput. 9(6), 873–895 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Benferhat, S., Dubois, D., Lagrue, S., Prade, H.: A big-stepped probability approach for discovering default rules. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11(Supplement-1), 1–14 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in system P. J. Appl. Non-Class. Log. 12(2), 189–213 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. In: Ann. Inst. H. Poincaré, vol. 7 (1937). English translation in Kyburg, H., Smokler, H.E. (eds.) Studies in Subjective Probability, pp. 93–158. Wiley, New York (1964)Google Scholar
  13. 13.
    Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relationships. IEEE Trans. Syst. Man Cybern. 24(12), 1724–1740 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: A survey of belief revision and updating rules in various uncertainty models. Int. J. Intell. Syst. 9, 61–100 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Goguen, J.A., Rosu, G.: Institution morphisms. Form. Asp. Comput. 13(3–5), 274–307 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hawthorne, J.: On the logic of nonmonotonic conditionals and conditional probabilities. J. Philos. Logic 25(2), 185–218 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hawthorne, J., Makinson, D.: The quantitative/qualitative watershed for rules of uncertain inference. Stud. Log. 86(2), 247–297 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Herrlich, H., Strecker, G.E.: Category Theory. Allyn and Bacon, Boston (1973)zbMATHGoogle Scholar
  21. 21.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kyburg Jr., H.E., Teng, C.M., Wheeler, G.R.: Conditionals and consequences. J. Applied Logic 5(4), 638–650 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55, 1–60 (1992)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lewis, D.: Counterfactuals. Harvard University Press, Cambridge (1973)Google Scholar
  25. 25.
    Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)zbMATHCrossRefGoogle Scholar
  26. 26.
    Pearl, J.: Probabilistic semantics for nonmonotonic reasoning: a survey. In: Shafer, G., Pearl, J. (eds.) Readings in Uncertain Reasoning, pp. 699–710. Morgan Kaufmann, San Mateo (1989)Google Scholar
  27. 27.
    Snow, P.: The emergence of ordered belief from initial ignorance. In: Proceedings AAAI-94, pp. 281–286. Seattle, WA (1994)Google Scholar
  28. 28.
    Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, II, pp. 105–134. Kluwer Academic (1988)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dept. of Computer ScienceFernUniversität in HagenHagenGermany
  2. 2.Dept. of Computer ScienceTU DortmundDortmundGermany

Personalised recommendations