Kripke modelling and verification of temporal specifications of a multiple UAV system

  • Gopinadh SirigineediEmail author
  • Antonios Tsourdos
  • Brian A. White
  • Rafał Żbikowski


A verifiable multiple UAV system cooperatively monitoring a road network is presented in this paper. The focus is on formal modelling and verification which can guarantee correctness of concurrent reactive systems such as multi-UAV systems. Kripke modelling is used to formally model the distributed cooperative control strategy, and to verify correctness of the specifications. Desirable properties of the mission such as liveness are specified in Computation Tree Logic (CTL). Model checking technique is used to exhaustively explore the state space to verify whether the system behaviour, modelled by Kripke model, satisfies the specifications. Violation of a specification is analysed by means of the counter-example generated by SMV model checking tool.


Kripke modelling Model checking Formal verification Multi-UAV systems 

Mathematics Subject Classifications (2010)

69T40 93C85 03B44 68Q60 68Q85 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beard, R.W., McLain, T.W., Nelson, D.B.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. In: Proceedings of the IEEE, vol. 94, pp. 1306–1324 (2007)Google Scholar
  2. 2.
    Gaudiano, P., Bonabeau, E., Shargel, B.: Evolving behaviors for a swarm of unmanned air vehicles. In: Proceedings of the 2005 IEEE Swarm Intelligence Symposium, pp. 317–324 (2005)Google Scholar
  3. 3.
    Jin, Y., Minai, A.A., Polycarpou, M.M.: Cooperative real-time search and task allocation in UAV teams. In: Proceedings of IEEE Conference on Decision and Control, pp. 7–12 (2003)Google Scholar
  4. 4.
    Yang, Y., Polycarpou, M., Minai, A.A.: Multi-UAV cooperative search using an opportunistic learning method. J. Dyn. Syst. Meas. Control 129, 716–728 (2007)CrossRefGoogle Scholar
  5. 5.
    Su Park, C., Jea Tahk, M., Bang, H.: Multiple aerial vehicles formation using swarm intelligence. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2003)Google Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)Google Scholar
  7. 7.
    Hinchey, M.G., Rash, J.L., Rouff, C.A.: Verification and validation of autonomous systems. In: Proceedings of 26th Annual NASA Goddard Software Engineering Workshop (2002)Google Scholar
  8. 8.
    Gat, E.: Autonomy software verification and validation might not be as hard as it seems. In: Proceedings of IEEE Aerospace Conference, pp. 3123–3128 (2004)Google Scholar
  9. 9.
    Rouff, C., Hinchey, M., Truszkowski, W., Rash, J.: Verifying large number of cooperating adaptive agents. In: Proceedings of the 11th International Conference on Parallel and Distributed Systems (ICPADS 2005), vol. 1, pp. 391–397 (2005)Google Scholar
  10. 10.
    Brat, G., Jonsson, A.: Challenges in verification and validation of autonomous systems for space exploration. In: Proceedings of IEEE International Joint Conference on Neural Networks, vol. 5, pp. 2909–2914 (2005)Google Scholar
  11. 11.
    Pecheur, C.: Verification and Validation of Autonomy Software at NASA. NASA/TM 2000-209602 (2000)Google Scholar
  12. 12.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kotmanová, D.: Temporal logic in verification of digital circuits. J. Electr. Eng. 59(1), 14–21 (2008)Google Scholar
  14. 14.
    Lu, Y., Jorda, M.: Verifying a gigabit ethernet switch using SMV. In: Proceedings of the 41st Annual Conference on Design Automation, pp. 230–233 (2004)Google Scholar
  15. 15.
    Schuppan, V., Biere, A.: Verifying the IEEE 1394 firewire tree identify protocol with SMV. Form. Asp. Comput 14, 267–280 (2003)Google Scholar
  16. 16.
    Miao, H., Zeng, H.: Model checking-based verification of web applications. In: Proceedings of the 12th IEEE International Conference on Engineering Complex Computer Systems, pp. 47–55 (2007)Google Scholar
  17. 17.
    Di Sciascio, E., Donini, F.M., Mongiello, M., Piscitelli, G.: Web applications design and maintenance using symbolic model checking. In: Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (2003)Google Scholar
  18. 18.
    Moreno-Ger, P., Fuentes-Fernández, R., Sierra, J.L., Fernández-Manjón, B.: Model-checking for adventure videogames. Trans. Info. Softw. Tech. 51(3), 564–580 (2009)CrossRefGoogle Scholar
  19. 19.
    Scherer, S., Lerda, F., Clarke, E.M.: Model checking robotic control systems. In: Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2005)Google Scholar
  20. 20.
    Shukla, S.K., Gupta, R.K.: A model checking approach to evaluating system level dynamic power management polocies for embedded systems. In: Proceedings of Sixth IEEE International High-Level Design Validation and Test Workshop, pp. 53–57 (2001)Google Scholar
  21. 21.
    Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.D.: Model checking large software specifications. IEEE Trans. Softw. Eng. 24(7), 498–520 (1998)CrossRefGoogle Scholar
  22. 22.
    Balch, T., Arkin, R.C.: Behavior based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  23. 23.
    Hebert, M., Stentz, A., Thorpe, C.: Mobility planning for autonomous navigation multiple robots in unstructured environments. In: Proceedings of the IEEE-ISIC-CIRA-ISAS Joint Conference, pp. 652–657 (1998)Google Scholar
  24. 24.
    Jeyaraman, S., Tsourdos, A., Żbikowski, R., White, B.: Kripke modelling approaches of a multiple robots system with minimalist communication: a formal approach of choice. Int. J. Syst. Sci. 37(6), 339–349 (2006)zbMATHCrossRefGoogle Scholar
  25. 25.
    Melholt Quottrup, M., Bak, T., Izadi-Zamanabadi, R.: Multi-robot planning: a timed automata approach. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation (2004)Google Scholar
  26. 26.
    Esposito, J.M., Kim, M.: Using formal modeling with an automated analysis tool to design and parametrically analyze a multirobot coordination protocol: a case study. IEEE Trans. Syst. Man Cybern., Part A, Syst. Humans 37(3), 285–297 (2007)CrossRefGoogle Scholar
  27. 27.
    Sirigineedi, G., Tsourdos, A., White, B.A., Żbikowski, R.: Towards verifiable approach to mission planning for multiple UAVs. In: AIAA Infotech@Aerospace Conference and AIAA Unmanned. Unlimited Conference (2009)Google Scholar
  28. 28.
    Sirigineedi, G., Tsourdos, A., Z˙ bikowski, R., White, B.A.: Modelling and verfication of multiple UAV mission using SMV. In: Workshop on Formal Methods for Aerospace, FM2009, 16th International Symposium on Formal Methods (2009)Google Scholar
  29. 29.
    Huth, M., Ryan, M.: Logic in Computer Science, 2nd edn. Cambridge University Press, Cambridge, England (2004)zbMATHGoogle Scholar
  30. 30.
    Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kripke, S.A.: Semantical considerations on modal logic. Acta Philos. Fenn 16, 83–94 (1963)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer Publications (1995)Google Scholar
  33. 33.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)Google Scholar
  34. 34.
    Holzmann, G.J.: The Model Checker Spin. Addison-Wesley (2004)Google Scholar
  35. 35.
    Coifman, B., McCord, M., Mishalani, R.G., Iswalt, M., Ji, Y.: Roadway traffic monitoring from an unmanned aerial vehicle. In: Proceedings of IEE Intelligent Transport Systems, vol. 153, pp. 11–20 (2006)Google Scholar
  36. 36.
    Boskovic, J.D., Prakash, R., Mehra, R.K.: A multi-layer control architecture for unmanned aerial vehicles. In: Proceedings of the 2002 American Control Conference, pp. 1825–1830 (2002)Google Scholar
  37. 37.
    Beard, R.W., McLain, T.W., Goorich, M.A., Anderson, E.P.: Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot. Autom. 18(6), 911–922 (2002)CrossRefGoogle Scholar
  38. 38.
    Ahr, D., Reinelt, G.: A tabu search algorithm for the min-max k-chinese postman problem. Comput. Oper. Res. 33, 3403–3422 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Osterhues, A., Mariak, F.: On Variants of the k-Chinese Postman Problem. Operations Research and Wirtschaftsinformatik, University Dortmund, No. 30 (2005)Google Scholar
  40. 40.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robotics 21(3), 376–386 (2005)Google Scholar
  41. 41.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gopinadh Sirigineedi
    • 1
    Email author
  • Antonios Tsourdos
    • 2
  • Brian A. White
    • 2
  • Rafał Żbikowski
    • 2
  1. 1.IVHM Centre, School of Applied SciencesCranfield UniversityCranfieldUK
  2. 2.Department of Informatics and Systems EngineeringCranfield UniversityShrivenhamUK

Personalised recommendations