Experimental evaluation of pheromone models in ACOPlan

  • Marco Baioletti
  • Alfredo Milani
  • Valentina Poggioni
  • Fabio Rossi
Article

Abstract

In this paper the system ACOPlan for planning with non uniform action cost is introduced and analyzed. ACOPlan is a planner based on the ant colony optimization framework, in which a colony of planning ants searches for near optimal solution plans with respect to an overall plan cost metric. This approach is motivated by the strong similarity between the process used by artificial ants to build solutions and the methods used by state–based planners to search solution plans. Planning ants perform a stochastic and heuristic based search by interacting through a pheromone model. The proposed heuristic and pheromone models are presented and compared through systematic experiments on benchmark planning domains. Experiments are also provided to compare the quality of ACOPlan solution plans with respect to state of the art satisficing planners. The analysis of the results confirm the good performance of the Action–Action pheromone model and points out the promising performance of the novel Fuzzy–Level–Action pheromone model. The analysis also suggests general principles for designing performant pheromone models for planning and further extensions of ACOPlan to other optimization models.

Keywords

Automated planning Ant colony optimization 

Mathematics Subject Classifications (2010)

68T05 68T20 68W20 68W25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artif. Intell. 116, 123–191 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: An ACO approach to planning. In: Proceedings of the 9th European Conference on Evolutionary Computation in Combinatorial Optimisation, EVOCOP 2009 (2009)Google Scholar
  3. 3.
    Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Ant search strategies for planning optimization. In: Proceedings of the International Conference on Planning and Scheduling, ICAPS 2009 (2009)Google Scholar
  4. 4.
    Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Optimal planning with ACO. In: Proceedings of AI*IA 2009. LNCS, vol. 5883, pp. 212–221 (2009)Google Scholar
  5. 5.
    Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: PlACO: Planning with Ants. In: Proceedings of The 22nd International FLAIRS Conference. AAAI (2009)Google Scholar
  6. 6.
    Blum, A., Furst, M.: Fast planning through planning graph analysis. Artif. Intell. 90, 281–300 (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Blum, C.: Ant colony optimization: introduction and recent trends. Physics of Life Reviews 2(4), 353–373 (2005)CrossRefGoogle Scholar
  8. 8.
    Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bylander, T.: The computational complexity of propositional strips planning. Artif. Intell. 69 (1–2), 165–204 (1994)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Cialdea, M., Limongelli, C., Poggioni, V., Orlandini, A.: Linear temporal logic as an executable semantics for planning languages. J. Logic, Lang. Inf. 16, 63–89 (2007)MATHGoogle Scholar
  11. 11.
    Conover, W.: Practical Nonparametric Statistics. John Wiley & Sons (1999)Google Scholar
  12. 12.
    Do, M.B., Kambhampati, S.: Sapa: a multi-objective metric temporal planner. J. Artif. Intell. Res. (JAIR) 20, 155–194 (2003)MATHGoogle Scholar
  13. 13.
    Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA, USA (2004)MATHCrossRefGoogle Scholar
  14. 14.
    Edelkamp, S., Kissmann, P.: Gamer: bridging planning and general game playing with symbolic search. In: Proceedings of IPC-6 Competition (2008)Google Scholar
  15. 15.
    Garcia, M.P., Oscar Montiel, O.C., Sepulveda, R., Melin, P.: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9, 1102–1110 (2008)CrossRefGoogle Scholar
  16. 16.
    Gerevini, A., Serina, I.: LPG: a planner based on local search for planning graphs. In: Proceedings of the 6th International Conference on Artificial Intelligence Planning and Scheduling (AIPS’02). AAAI Press, Toulouse, France (2002)Google Scholar
  17. 17.
    Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. (JAIR). 26, 191–246 (2006)MATHCrossRefGoogle Scholar
  18. 18.
    Helmert, M., Do, M., Refanidis, I.: International Planning Competition IPC-2008. The Deterministic Part. http://ipc.icaps-conference.org/ (2008)
  19. 19.
    Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. (JAIR) 14, 253–302 (2001)MATHGoogle Scholar
  20. 20.
    Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proceedings of KR-96, Cambridge, Massachusetts, USA (1996)Google Scholar
  21. 21.
    Kautz, H., Selman, B.: Unifying sat-based and graph-based planning. In: Proceedings of IJCAI-99, Stockholm (1999)Google Scholar
  22. 22.
    Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proceedings of ECAI 2008, pp. 588–592 (2008)Google Scholar
  23. 23.
    Menkes van den Briel, T.V., Kambhampati, S.: Loosely coupled formulations for automated planning: an integer programming perspective. J. Artif. Intell. Res. (JAIR) 31, 217–257 (2007)Google Scholar
  24. 24.
    Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann (2004)Google Scholar
  25. 25.
    Richter, S., Westphal, M.: The lama planner using landmark counting in heuristic search. In: Proc. of IPC-6 Competition (2008)Google Scholar
  26. 26.
    Rossi, F.: An aco approach to planning. Ph.D. thesis, Mathematics and Computer Science Dept., University of Perugia, Italy (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marco Baioletti
    • 1
  • Alfredo Milani
    • 1
  • Valentina Poggioni
    • 1
  • Fabio Rossi
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations