Observation strategies for event detection with incidence on runtime verification: theory, algorithms, experimentation

  • Marco AlbertiEmail author
  • Pierangelo Dell’Acqua
  • Luís Moniz Pereira


Many applications (such as system and user monitoring, runtime verification, diagnosis, observation-based decision making, intention recognition) all require to detect the occurrence of an event in a system, which entails the ability to observe the system. Observation can be costly, so it makes sense to try and reduce the number of observations, without losing full certainty about the event’s actual occurrence. In this paper, we propose a formalization of this problem. We formally show that, whenever the event to be detected follows a discrete spatial or temporal pattern, then it is possible to reduce the number of observations. We discuss exact and approximate algorithms to solve the problem, and provide an experimental evaluation of them. We apply the resulting algorithms to verification of linear temporal logics formulæ. Finally, we discuss possible generalizations and extensions, and, in particular, how event detection can benefit from logic programming techniques.


Event detection Runtime verification Temporal logic Logic programming Complexity 

Mathematics Subject Classifications (2010)

68Q17 68U99 68W25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Trans. Comput. Log. (TOCL) 9(4), 1–41 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and generalized stable models via tabled dual programs. Theory Pract. Log. Program. 4(4), 383–428 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anh, H.T., Pereira, L.M.: Collective intention recognition and elder care. In: Proactive Assistant Agents: Papers from the AAAI Fall Symposium (FS-10-07), pp. 26–31. AAAI (2010)Google Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, S.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20, 651–674 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bauer, A., Leucker, M., Schallhart, S.: Runtime verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4) (2011)Google Scholar
  7. 7.
    Bodden, E.: A lightweight LTL runtime verification tool for Java. In: Companion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2004, Vancouver, BC, Canada, 24–28 October 2004, pp. 306–307. ACM, ACM Student Research Competition (2004)Google Scholar
  8. 8.
    Carlson, J., Lisper, B.: An event detection algebra for reactive systems. In: Proceedings of the 4th ACM International Conference on Embedded Software, pp. 147–154. ACM, New York, NY, USA (2004)CrossRefGoogle Scholar
  9. 9.
    Costantini, S., Tocchio, A., Toni, F., Tsintza, P.: A multi-layered general agent model. In: AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, 10th Congress of the Italian Association for Artificial Intelligence. LNCS, vol. 4733. Springer, Berlin (2007)Google Scholar
  10. 10.
    Costantini, S., Dell’Acqua, P., Pereira, L.M.: A multi-layer framework for evolving and learning agents. In: Raja, A., Cox, M.T. (eds.) Proceedings of Metareasoning: Thinking About Thinking Workshop at AAAI 2008, Chicago, USA (2008)Google Scholar
  11. 11.
    Costantini, S., Dell’Acqua, P., Pereira, L.M., Tsintza, P.: Runtime verification of agent properties. In: Proc. of the Int. Conf. on Applications of Declarative Programming and Knowledge Management (INAP09) (2009)Google Scholar
  12. 12.
    Costantini, S., Dell’Acqua, P., Pereira, L.M., Toni, F.: Learning and evolving agents in user monitoring and training. In: Atti del Congresso Nazionale AICA 2010, L’Aquila, Italy (2010). Available at
  13. 13.
    Dell’Acqua, P., Lombardi, A., Pereira, L.M.: Modelling adaptive controllers with evolving logic programs. In: Andrade-Cetto, J., Ferrier, J.-L., Pereira, J.D., Filipe, J. (eds.) ICINCO 2006, Setúbal, Portugal. INSTICC Press (2006)Google Scholar
  14. 14.
    Dell’Acqua, P., Pereira, L.M.: Preferential theory revision. J. Appl. Log. 5(4), 586–601(2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road map of current technologies and future trends. Comput. Intell. J. 23(1), 61–91 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goldsby, H.J., Cheng, B.H., Zhang, J.: Amoeba-rt: run-time verification of adaptive software. In: Giese, H. (ed.) Models in Software Engineering, pp. 212–224. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Guralnik, V., Srivastava, J.: Event detection from time series data. In: KDD ’99: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM, New York, NY, USA (1999)CrossRefGoogle Scholar
  18. 18.
    Hätönen, K., Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.: Knowledge discovery from telecommunication network alarm databases. In: Proceedings of the Twelfth International Conference on Data Engineering, ICDE ’96, pp. 115–122. IEEE Computer Society, Washington, DC, USA (1996)CrossRefGoogle Scholar
  19. 19.
    Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling technologies. In: DEBS ’09: Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, pp. 1–15. ACM, New York, NY, USA (2009)CrossRefGoogle Scholar
  20. 20.
    Iyengar, V.S.: On detecting space-time clusters. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 587–592. ACM, New York, NY, USA (2004)CrossRefGoogle Scholar
  21. 21.
    Jin, Y., Dai, J., Lu, C.T.: Spatial-temporal data mining in traffic incident detection. In: In Proc. SIAM DM 2006 Workshop on Spatial Data Mining (2006)Google Scholar
  22. 22.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1993)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kanno, T., Nakata, K., Furuta, K.: A method for team intention inference. Int. J. Hum.-Comput. Stud. 58(4), 393–413 (2003)CrossRefGoogle Scholar
  24. 24.
    Kautz, H., Allen, J.F.: Generalized plan recognition. In: Proceedings of the Conference of the American Association of Artificial Intelligence (AAAI-86), pp. 32–38. AAAI (1986)Google Scholar
  25. 25.
    de Kleer, J.: Diagnosing multiple persistent and intermittent faults. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 733–738 (2009)Google Scholar
  26. 26.
    de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. Intell. 56(2–3), 197–222 (1992)zbMATHCrossRefGoogle Scholar
  27. 27.
    Leucker, M., Schallhart, S.: A brief account of runtime verification. J. Log. Algebra Program. 78(5), 293–303 (2009)zbMATHCrossRefGoogle Scholar
  28. 28.
    Lopes, G., Pereira, L.M.: Prospective programming with acorda. In: Empirically Successful Computerized Reasoning (ESCoR’06) Workshop at the 3rd International Joint Conference on Automated Reasoning (IJCAR’06), Seattle, USA (2006)Google Scholar
  29. 29.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Dis. 1, 259–289 (1997)CrossRefGoogle Scholar
  30. 30.
    Neill, D.B., Moore, A.W., Sabhnani, M., Daniel, K.: Detection of emerging space-time clusters. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 218–227. ACM, New York, NY, USA (2005)CrossRefGoogle Scholar
  31. 31.
    Padmanabhan, B., Tuzhilin, A.: Pattern discovery in temporal databases: a temporal logic approach. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 351–354 (1996)Google Scholar
  32. 32.
    Pereira, F.: Extraposition grammars. Comput. Linguist. 7, 243–256 (1981)Google Scholar
  33. 33.
    Pereira, L.M., Anh, H.T.: Intention recognition via causal bayes networks plus plan generation. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L. (eds.) 14th Portuguese Intl. Conf. on Artificial Intelligence. LNAI, vol. 5816, pp. 138–149. Springer (2009)Google Scholar
  34. 34.
    Pereira, L.M., Anh, H.T.: Intention recognition with evolution prospection and causal bayesian networks. In: Madureira, A., Ferreira, J., Vale, Z. (eds.) Computational Intelligence for Engineering Systems: Emergent Applications. Intelligent Systems, Control and Automation: Science and Engineering Book Series, vol. 46, pp. 1–33. Springer (2010). Select updated papers from Intl. Symp. on Computational Intelligence for Engineering Systems.
  35. 35.
    Pereira, L.M., Lopes, G.: Prospective logic agents. In: Neves, J.M., Santos, M.F., Machado, J.M. (eds.) Progress in Artificial Intelligence, Procs. 13th Portuguese Intl.Conf. on Artificial Intelligence (EPIA’07). LNAI, vol. 4874, pp. 73–86. Springer, Guimarães (2007)Google Scholar
  36. 36.
    Pereira, L.M., Ramli, C.D.P.K.: Modelling decision making with probabilistic causation. Intell. Decis. Technol. 4(2), 133–148 (2010).
  37. 37.
    Pereira, L.M., Dell’Acqua, P., Lopes, G.: On preferring and inspecting abductive models. In: Gill, A, Swift, T. (eds.) Practical Aspects of Declarative Languages, 11th International Symposium, PADL 2009, Savannah, GA, USA, 19–20 January 2009. Proceedings. Lecture Notes in Computer Science, vol. 5418, pp. 1–15. Springer (2009)Google Scholar
  38. 38.
    Pnueli, A.: The temporal logics of programs. In: Proceedings of the 18th Symposium on the Foundations of Computer Science, pp. 46–57 (1977)Google Scholar
  39. 39.
    Sheu, S., Cheng, C.-Y., Chang, A.: Fast pattern detection in stream data. In: Proceedings of the 19th International Conference on Advanced Information Networking and Applications. AINA ’05, vol. 1, pp. 125–130. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar
  40. 40.
    Slavík, P.: A tight analysis of the greedy algorithm for set cover. In: STOC ’96: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 435–441. ACM, New York, NY, USA (1996)CrossRefGoogle Scholar
  41. 41.
    Wu, M., Adeli, H.: Wavelet-neural network model for automatic traffic incident detection. Math. Comput. Appl. 6(2), 85–96 (2001)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marco Alberti
    • 1
    Email author
  • Pierangelo Dell’Acqua
    • 2
  • Luís Moniz Pereira
    • 1
  1. 1.Centro de Inteligência Artificial (CENTRIA), Departamento de Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Dept. of Science and Technology, ITNLinköping UniversityNorrköpingSweden

Personalised recommendations