Multi-armed bandits with episode context

Article

Abstract

A multi-armed bandit episode consists of n trials, each allowing selection of one of K arms, resulting in payoff from a distribution over [0,1] associated with that arm. We assume contextual side information is available at the start of the episode. This context enables an arm predictor to identify possible favorable arms, but predictions may be imperfect so that they need to be combined with further exploration during the episode. Our setting is an alternative to classical multi-armed bandits which provide no contextual side information, and is also an alternative to contextual bandits which provide new context each individual trial. Multi-armed bandits with episode context can arise naturally, for example in computer Go where context is used to bias move decisions made by a multi-armed bandit algorithm. The UCB1 algorithm for multi-armed bandits achieves worst-case regret bounded by \(O\left(\sqrt{Kn\log(n)}\right)\). We seek to improve this using episode context, particularly in the case where K is large. Using a predictor that places weight Mi > 0 on arm i with weights summing to 1, we present the PUCB algorithm which achieves regret \(O\left(\frac{1}{M_{\ast}}\sqrt{n\log(n)}\right)\) where M ∗  is the weight on the optimal arm. We illustrate the behavior of PUCB with small simulation experiments, present extensions that provide additional capabilities for PUCB, and describe methods for obtaining suitable predictors for use with PUCB.

Keywords

Computational learning theory Multi-armed bandits Contextual bandits UCB PUCB Computer Go 

Mathematics Subject Classifications (2010)

68Q32 68T05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audibert, J.Y., Bubeck, S.: Minimax policies for adversarial and stochastic bandits. In: 22nd Annual Conference on Learning Theory (COLT 2009) (2009)Google Scholar
  2. 2.
    Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff using variance estimates in multi-armed bandits. Theor. Comput. Sci. 410(19), 1876–1902 (2009)MATHCrossRefGoogle Scholar
  3. 3.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bouzy, B., Cazenave, T.: Computer Go: An AI oriented survey. Artif. Intell. 132(1), 39–103 (2001)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bouzy, B., Chaslot, G.: Bayesian generation and integration of K-nearest-neighbor patterns for 19x19 Go. In: IEEE Symposium on Computational Intelligence in Games (CIG05), pp. 176–181 (2005)Google Scholar
  7. 7.
    Bouzy, B., Helmstetter, B.: Monte-Carlo Go developments. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games (ACG 2003), IFIP, vol. 263, pp. 159–174. Springer, New York (2003)Google Scholar
  8. 8.
    Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits problems. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) Algorithmic Learning Theory (ALT 2009), Lecture Notes in Computer Science, vol. 5809, pp. 23–37. Springer, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Cai, X., Wunsch, D.C.: Computer Go: A grand challenge to AI. In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, Studies in Computational Intelligence, vol. 63, pp. 443–465. Springer, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, H., Bouzy, B.: Progressive strategies for Monte-Carlo tree search. In: Proceedings of the 10th Joint Conference on Information Sciences (JCIS 2007), pp. 655–661 (2007)Google Scholar
  11. 11.
    Chaslot, G., Chatriot, L., Fiter, C., Gelly, S., Hoock, J., Perez, J., Rimmel, A., Teytaud, O.: Combining expert, offline, transient and online knowledge in Monte-Carlo exploration. http://www.lri.fr/~teytaud/eg.pdf (2008)
  12. 12.
    Chaslot, G., Fiter, C., Hoock, J.B., Rimmel, A., Teytaud, O.: Adding expert knowledge and exploration in Monte-Carlo tree search. In: Advances in Computer Games (ACG12). Springer, New York (2009)Google Scholar
  13. 13.
    Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) Computers and Games (CG 2006), Lecture Notes in Computer Science, vol. 4630, pp. 72–83. Springer, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Coulom, R.: Computing Elo ratings of move patterns in the game of Go. In: Computer Games Workshop 2007 (2007)Google Scholar
  15. 15.
    Coulom, R.: Monte-Carlo tree search in crazy stone. In: 12th Game Programming Workshop (GPW-07) (2007)Google Scholar
  16. 16.
    de Mesmay, F., Rimmel, A., Voronenko, Y., Püschel, M.: Bandit-based optimization on graphs with application to library performance tuning. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) International Conference on Machine Learning (ICML 2009), pp. 729–736. ACM, New York (2009)Google Scholar
  17. 17.
    Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J. Mach. Learn. Res. 7, 1079–1105 (2006)MathSciNetMATHGoogle Scholar
  18. 18.
    Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, IL, USA, 13–17 July 2008, pp. 259–264. AAAI Press, Menlo Park (2008)Google Scholar
  19. 19.
    Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Ghahramani, Z. (ed.) International Conference on Machine Learning (ICML 2007), pp. 273–280. ACM, New York (2007)Google Scholar
  20. 20.
    Gelly, S., Silver, D.: Achieving master level play in 9 x 9 computer Go. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, IL, USA, 13–17 July 2008, pp. 1537–1540. AAAI Press, Menlo Park (2008)Google Scholar
  21. 21.
    Juditsky, A., Nazin, A., Tsybakov, A., Vayatis, N.: Gap-free bounds for multi-armed stochastic bandit. In: World Congress of the International Federation of Automatic Control (IFAC) 2008 (2008)Google Scholar
  22. 22.
    Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: Efficient bandit algorithms for online multiclass prediction. In: Cohen, W.W., McCallum, A., Roweis, S.T. (eds.) International Conference on Machine Learning (ICML 2008), pp. 440–447. ACM, New York (2008)Google Scholar
  23. 23.
    Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In: European Conference on Machine Learning (ECML 2006), pp. 282–293 (2006)Google Scholar
  24. 24.
    Langford, J., Zhang, T.: The epoch-greedy algorithm for multi-armed bandits with side information. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Neural Information Processing Systems (NIPS). MIT Press, Cambridge (2007)Google Scholar
  25. 25.
    Mannor, S., Tsitsiklis, J.N.: The sample complexity of exploration in the multi-armed bandit problem. J. Mach. Learn. Res. 5, 623–648 (2004)MathSciNetMATHGoogle Scholar
  26. 26.
    Rosin, C.D.: Multi-armed bandits with episode context. In: The Eleventh International Symposium on Artificial Intelligence and Mathematics (ISAIM 2010) (2010)Google Scholar
  27. 27.
    Shalev-Shwartz, S., Shamir, O., Srebro, N., Sridharan, K.: Stochastic convex optimization. In: 22nd Annual Conference on Learning Theory (COLT 2009) (2009)Google Scholar
  28. 28.
    Streeter, M.J., Smith, S.F.: A simple distribution-free approach to the max k-armed bandit problem. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming (CP 2006), Lecture Notes in Computer Science, vol. 4204, pp. 560–574. Springer, New York (2006)CrossRefGoogle Scholar
  29. 29.
    Strehl, A.L., Mesterharm, C., Littman, M.L., Hirsh, H.: Experience-efficient learning in associative bandit problems. In: Cohen, W.W., Moore, A. (eds.) International Conference on Machine Learning (ICML 2006), pp. 889–896. ACM, New York (2006)Google Scholar
  30. 30.
    Strehl, A.L., Langford, J., Li, L., Kakade, S.M.: Learning from Logged Implicit Exploration Data. In: Lafferty, J., Williams, C.K.I, Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Neural Information Processing Systems (NIPS) (2010)Google Scholar
  31. 31.
    Teytaud, O., Gelly, S., Sebag, M.: Anytime many-armed bandits. In: Zucker, J., Cornuéjols, A. (eds.) Conférence d’Apprentissage (CAP07), pp. 387–402 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Parity Computing, Inc.San DiegoUSA

Personalised recommendations