Advertisement

The algorithmization of counterfactuals

  • Judea PearlEmail author
Article

Abstract

Recent advances in causal reasoning have given rise to a computation model that emulates the process by which humans generate, evaluate and distinguish counterfactual sentences. Though compatible with the “possible worlds” account, this model enjoys the advantages of representational economy, algorithmic simplicity and conceptual clarity. Using this model, the paper demonstrates the processing of counterfactual sentences on a classical example due to Ernest Adam. It then gives a panoramic view of several applications where counterfactual reasoning has benefited problem areas in the empirical sciences.

Keywords

Causal reasoning Counterfactuals Conditional logic 

Mathematics Subject Classifications (2010)

68T30 68T37 

References

  1. 1.
    Adams, E.: The Logic of Conditionals. D. Reidel, Dordrecht, Netherlands (1975)zbMATHGoogle Scholar
  2. 2.
    Arlo-Costa, H.: The logic of conditionals. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/logic-conditionals/ (2007)
  3. 3.
    Balke, A., Pearl, J.: Counterfactuals and policy analysis in structural models. In: Besnard, P., Hanks, S. (eds.) Uncertainty in Artificial Intelligence 11, pp. 11–18. Morgan Kaufmann, San Francisco (1995)Google Scholar
  4. 4.
    Baron, R., Kenny, D.: The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986)CrossRefGoogle Scholar
  5. 5.
    Campbell, D., Stanley, J.: Experimental and Quasi-Experimental Designs for Research. R. McNally and Co., Chicago, IL (1966)Google Scholar
  6. 6.
    Fine, K.: Review of Lewis’ counterfactuals. Mind 84, 451–458 (1975)CrossRefGoogle Scholar
  7. 7.
    Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3, 151–182 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gardenfors, P.: Causation and the dynamics of belief. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change and Statistics II, pp. 85–104. Kluwer Academic Publishers (1988)Google Scholar
  9. 9.
    Goldszmidt, M., Pearl, J.: Rank-based systems: a simple approach to belief revision, belief update, and reasoning about evidence and actions. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the Third International Conference on Knowledge Representation and Reasoning, pp. 661–672. Morgan Kaufmann, San Mateo, CA (1992)Google Scholar
  10. 10.
    Haavelmo, T.: The statistical implications of a system of simultaneous equations. Econometrica 11, 1–12 (1943) (Reprinted in Hendry, D.F., Morgan, M.S. (eds.) The Foundations of Econometric Analysis, pp. 477–490. Cambridge University Press (1995))Google Scholar
  11. 11.
    Halpern, J.: Axiomatizing causal reasoning. In: Cooper, G., Moral, S. (eds.) Uncertainty in Artificial Intelligence, pp. 202–210. Morgan Kaufmann, San Francisco, CA (1998) (Also in J. Artif. Intell. Res. 12(3), 17–37 (2000)Google Scholar
  12. 12.
    Hurwicz, L.: Generalization of the concept of identification. In: Koopmans, T. (ed.) Statistical Inference in Dynamic Economic Models. Cowles Commission, Monograph 10, pp. 245–257. Wiley, New York (1950)Google Scholar
  13. 13.
    Joyce, J.: The Foundatins of Causal Decision Theory. Cambridge University Press, Cambridge, MA (1999)CrossRefGoogle Scholar
  14. 14.
    Lewis, D.: Counterfactuals and comparative possibility. In: Harper, W.L., Stalnaker, R., Pearce, G. (eds.) Ifs, pp. 57–85. D. Reidel, Dordrecht, 1981 (1973)Google Scholar
  15. 15.
    Marschak, J.: Economic measurements for policy and prediction. In: Hood, W.C., Koopmans, T. (eds.) Studies in Econometric Method, pp. 1–26. Cowles Commission Monograph 10, Wiley and Sons, Inc. (1953)Google Scholar
  16. 16.
    Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn., 2009. Cambridge University Press, New York. (2000)zbMATHGoogle Scholar
  18. 18.
    Pearl, J.: Direct and indirect effects. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 411–420. Morgan Kaufmann, San Francisco, CA (2001)Google Scholar
  19. 19.
    Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146. http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf (2009a)
  20. 20.
    Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge University Press, New York (2009b)zbMATHGoogle Scholar
  21. 21.
    Pearl, J.: The mediation formula: a guide to the assessment of causal pathways in nonlinear models. In: Berzuini, C., Dawid, P., Bernardinelli, L. (eds.) Causality: Statistical Perspectives and Applications. Tech. Rep. R-363, Department of Computer Science, University of California, Los Angeles. http://ftp.cs.ucla.edu/pub/stat_ser/r363.pdf (2011, forthcoming)
  22. 22.
    Pearl, J., Bareinboim, E.: Transportability of causal and statistical relations: a formal approach. In: Proceedings of AAAI-2011. Tech. Rep. R-372, Department of Computer Science, University of California, Los Angeles, CA. http://ftp.cs.ucla.edu/pub/stat_ser/r372-a.pdf (2011, forthcoming)
  23. 23.
    Petersen, M., Sinisi, S., van der Laan, M.: Estimation of direct causal effects. Epidemiology 17, 276–284 (2006)CrossRefGoogle Scholar
  24. 24.
    Ramsey, F.: General propositions and causality. In: Mellor, H.A. (eds.) Philosophical Papers, pp. 145–153 . Cambridge University Press, Cambridge (1929)Google Scholar
  25. 25.
    Robins, J., Greenland, S.: Identifiability and exchangeability for direct and indirect effects. Epidemiology 3, 143–155 (1992)CrossRefGoogle Scholar
  26. 26.
    Shpitser, I., Pearl, J.: What counterfactuals can be tested. In: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pp. 352–359. AUAI Press, Vancouver, BC, Canada (2007) (Also, J. Mach. Learn. Res. 9, 1941–1979 (2008))Google Scholar
  27. 27.
    Shpitser, I., Pearl, J.: Effects of treatment on the treated: Identification and generalization. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, Montreal, Quebec (2009)Google Scholar
  28. 28.
    Simon, H.: Causal ordering and identifiability. In: Hood, W.C., Koopmans, T. (eds.) Studies in Econometric Method, pp. 49–74. Wiley, Inc., New York, NY (1953)Google Scholar
  29. 29.
    Skyrms, B.: Causal Necessity. Yale University Press, New Haven (1980)Google Scholar
  30. 30.
    Stalnaker, R.: Letter to David Lewis. In: Harper, W.L., Stalnaker, R., Pearce, G. (eds.) Ifs, pp. 151–152. D. Reidel, Dordrecht, 1981 (1972)Google Scholar
  31. 31.
    Taylor, C., Dennett, D.: Who’s still afraid of determinism? Rethinking causes and possibilities. In: Kane, R.H. (ed.) The Oxford Handbook of Free Will. Oxford University Press, New York (2011, forthcoming)Google Scholar
  32. 32.
    Tian, J., Pearl, J.: A general identification condition for causal effects. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp. 567–573. AAAI Press/The MIT Press, Menlo Park, CA (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of California Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations