Annals of Mathematics and Artificial Intelligence

, Volume 61, Issue 2, pp 125–154 | Cite as

Improving the anytime behavior of two-phase local search

  • Jérémie Dubois-Lacoste
  • Manuel López-Ibáñez
  • Thomas Stützle


Algorithms based on the two-phase local search (TPLS) framework are a powerful method to efficiently tackle multi-objective combinatorial optimization problems. TPLS algorithms solve a sequence of scalarizations, that is, weighted sum aggregations, of the multi-objective problem. Each successive scalarization uses a different weight from a predefined sequence of weights. TPLS requires defining the stopping criterion (the number of weights) a priori, and it does not produce satisfactory results if stopped before completion. Therefore, TPLS has poor “anytime” behavior. This article examines variants of TPLS that improve its “anytime” behavior by adaptively generating the sequence of weights while solving the problem. The aim is to fill the “largest gap” in the current approximation to the Pareto front. The results presented here show that the best adaptive TPLS variants are superior to the “classical” TPLS strategies in terms of anytime behavior, matching, and often surpassing, them in terms of final quality, even if the latter run until completion.


Multi-objective Anytime algorithms Two-phase local search 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Beume, N., Naujoks, B., Emmerich M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)Google Scholar
  4. 4.
    Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res. 15(3), 483–495 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Effective hybrid stochastic local search algorithms for biobjective permutation flowshop scheduling. In: Blesa, M.J., Blum C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) Hybrid Metaheuristics, Lecture Notes in Computer Science, vol. 5818, pp 100–114. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Adaptive “anytime” two-phase local search. In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization, 4th International Conference, LION 4, Lecture Notes in Computer Science, vol. 6073, pp. 52–67. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Supplementary Material: Improving the Anytime Behavior of Two-Phase Local Search. (2010)
  8. 8.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ehrgott, M., Gandibleux, X.: Approximative solution methods for combinatorial multicriteria optimization. TOP 12(1), 1–88 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE Press, Piscataway (2006)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1, 117–129 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A., Corne, D. (eds.) Evolutionary Multi-criterion Optimization (EMO 2001). Lecture Notes in Computer Science, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar
  14. 14.
    Johnson, D.S.: Optimal two- and three-stage production scheduling with setup times included. Nav. Res. Logist. Q. 1, 61–68 (1954)CrossRefGoogle Scholar
  15. 15.
    Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)CrossRefGoogle Scholar
  16. 16.
    López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 209–222. Springer, Berlin (2010)Google Scholar
  17. 17.
    Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics 16(3), 475–510 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca. C.M., et al. (eds.) Evolutionary Multi-criterion Optimization (EMO 2003). Lecture Notes in Computer Science, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial optimization: a review. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, pp. 29–1—29–15. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  21. 21.
    Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., et al. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–200. Springer(2004)Google Scholar
  23. 23.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–83 (1996)Google Scholar
  25. 25.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto evolutionary algorithm. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jérémie Dubois-Lacoste
    • 1
  • Manuel López-Ibáñez
    • 1
  • Thomas Stützle
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations