Detecting and repairing anomalous evolutions in noisy environments

Logic programming formalization and complexity results
  • Fabrizio Angiulli
  • Gianluigi Greco
  • Luigi Palopoli
Article
  • 52 Downloads

Abstract

In systems where agents are required to interact with a partially known and dynamic world, sensors can be used to obtain knowledge about the environment. However, sensors may be unreliable, that is, they may deliver wrong information (due, e.g., to hardware or software malfunctioning) and, consequently, they may cause agents to take wrong decisions, which is a scenario that should be avoided. The paper considers the problem of reasoning in noisy environments in a setting where no (either certain or probabilistic) data is available in advance about the reliability of sensors. Therefore, assuming that each agent is equipped with a background theory encoding its general knowledge about the world, a concept of detecting an anomaly perceived in sensor data and the related concept of agent recovering to a coherent status of information are defined. In this context, the complexities of various anomaly detection and anomaly recovery problems are studied. Finally, rewriting algorithms are proposed that transform recovery problems into equivalent inference problems under answer set semantics, thereby making them effectively realizable on top of available answer set solvers.

Keywords

Logic programming Computational complexity Nonmonotonic reasoning 

Mathematics Subject Classification (2010)

68T27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: prtial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)MATHCrossRefGoogle Scholar
  2. 2.
    Alchourrón, C.E., Makinson, D.: The logic of theory change: contraction functions and their associated revision functions. Theoria 48, 14–37 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alchourrón, C.E., Makinson, D.: On the logic of theory change: safe contraction. Stud. Log. 44, 405–422 (1985)MATHCrossRefGoogle Scholar
  4. 4.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pp. 68–79 (1999)Google Scholar
  5. 5.
    Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and effectors in the situation calculus. Artif. Intell. 111(1–2), 171–208 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Balduccini, M., Gelfond, M.: Diagnostic reasoning with a-prolog. J. Theory Pract. Log. Program. 3(4–5), 425–461 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in the presence of incompleteness. Artif. Intell. 122(1–2), 241–267 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Baral, C., McIlraith, S.A., Son, T.C.: Formulating diagnostic problem solving using an action language with narratives and sensing. In: Proc. of the 7th Int. Conf. of Principles of Knowledge Representation and Reasoning (KR), pp. 311–322 (2000)Google Scholar
  9. 9.
    Baral, C., Tran, N., Tuan, L.C.: Reasoning about actions in a probabilistic setting. In: Proc. of the 18th Conf. on Artificial Intelligence and 14th Conf. on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 507–512 (2002)Google Scholar
  10. 10.
    Baral, C., Son, T.C.: Approximate reasoning about actions in presence of sensing and incomplete information. In: Proc. of the 1997 International Logic Programming Symposium (ILPS), pp. 387–401 (1997)Google Scholar
  11. 11.
    Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approximation of fixing numerical attributes in databases under integrity constraints. Inf. Syst. 33(4–5), 407–434 (2008)CrossRefGoogle Scholar
  12. 12.
    Bertossi, L., Chomicki, J., Cortes, A., Gutierrez, C.: Consistent answers from integrated data sources. In: Proc. of the 6th Int. Conf. on Flexible Query Answering Systems (FQAS), pp. 71–85 (2002)Google Scholar
  13. 13.
    Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model and effective heuristic for repairing constraints by value modification. In: Proc. of the ACM SIGMOD Int. Conf. on Management of Databooktitle (SIGMOD), pp. 143–154 (2005)Google Scholar
  14. 14.
    Boutilier, C., Dean, R., Hanks. S.: Planning under uncertainty: structural assumptions and computational leverage. JAIR 11, 1–94 (1999)MathSciNetMATHGoogle Scholar
  15. 15.
    Boutilier, C., Reiter, R., Price. B.: Symbolic dynamic programming for first-order MDPs. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 690–700 (2001)Google Scholar
  16. 16.
    Bravo, L., Bertossi, L.: Logic programming for consistently querying data integration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 10–15 (2003)Google Scholar
  17. 17.
    Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)CrossRefGoogle Scholar
  18. 18.
    Calì, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data integration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 16–21 (2003)Google Scholar
  19. 19.
    Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput. 119(2), 231–239 (1995)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Damasio, C., Pereira, L.M., Schroeder, M.: Revise: Logic programming and diagnosis. In: Proc. of the 4th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR), pp. 354–363. Dagstuhl, Germany (1997)Google Scholar
  21. 21.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  22. 22.
    Dix, J., Either, T., Fink, M., Polleres, A., Zhang, Y.: Monitoring agents using declarative planning. Fundam. Inform. 57(2–4), 345–370 (2003)MATHGoogle Scholar
  23. 23.
    Dix, J., Kraus, S., Subrahmanian, V.S.: Heterogenous temporal probabilistic agents. ACM Trans. Comput. Log. 7(1), 151–198 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dix, J., Nanni, M., Subrahmanian, V.S.: Probabilistic agent reasoning. ACM Trans. Comput. Log. 2(1), 201–245 (2000)MathSciNetGoogle Scholar
  25. 25.
    Eiter, T., Erdem, E., Faber, W.: Plan reversals for recovery in execution monitoring. In: Proc. of the 10th Int. Work. on Non-Monotonic Reasoning (NMR), pp. 147–154 (2004)Google Scholar
  26. 26.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Commun. 12(1–2), 99–111 (1999)MathSciNetGoogle Scholar
  27. 27.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state planning: semantics and complexity. ACM Trans. Comput. Log. 5(2), 206–263 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Eiter, T., Fink, M., Greco, G., Lembo., D.: Repair localization for query answering from inconsistent databases. ACM Trans. Database Syst. 33(2), (2008)Google Scholar
  29. 29.
    Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4): 289-323 (1995)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Eiter. T., Gottlob. G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Eiter, T., Mascardi, V., Subrahmanian, V.: Error-tolerant agents. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic. Logic Programming and Beyond, pp. 586–625 (2002)Google Scholar
  32. 32.
    Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. J. Comput. Syst. Sci. 73(4), 584–609 (2007)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic environments. Fundam. Inform. 57(2–4), 371–392 (2003)MATHGoogle Scholar
  34. 34.
    Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, S.: Census data repair: a challenging application of disjunctive logic programming. In: Proc. of the 8th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pp. 561–578 (2001)Google Scholar
  35. 35.
    Gelfond, M., Lifschitz. V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4): 365–386 (1991)CrossRefGoogle Scholar
  36. 36.
    Gelfond, M., Lifschitz. V.: Representing actions and change by logic programming. J. Log. Program. 17(2–4), 301–323 (1993)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Genesereth, M.R.: The use of design descriptions in automated diagnosis. Artif. Intell. 24, 411–436 (1984)CrossRefGoogle Scholar
  38. 38.
    Giacomo, G.D., Soutchanski, M., Reiter, R.: Execution monitoring of high-level robot programs. In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR), pp. 453–464 (1998)Google Scholar
  39. 39.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153, 49–104 (2004)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)CrossRefGoogle Scholar
  41. 41.
    Greco, G., Lembo, D.: Data integration with preferences among sources. In: Proc. of the 23rd International Conference on Conceptual Modeling (ER), pp. 231–244 (2004)Google Scholar
  42. 42.
    Halpern, J.Y., Tuttle, M.R.: Knowledge, probability, and adversaries. J. ACM 40(4), 917–962 (1993)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Hansson, S.O.: A survey of non-prioritized belief revision. Erkenntnis 50, 413–427 (1999)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions with sensing under qualitative and probabilistic uncertainty. In: Proc. of the 6th European Conf. on Artificial Intelligence (ECAI), pp. 818–822 (2004)Google Scholar
  45. 45.
    Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Unfolding partiality and disjunctions in stable model semantics. In: Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR), pp. 411–419 (2000)Google Scholar
  46. 46.
    Johnson, D.S.: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, chap. A Catalog of Complexity Classes, pp. 67–161. Elsevier and The MIT Press (co-publishers) (1990)Google Scholar
  47. 47.
    Kakas, A.C., Mancarella, P.: Database updates through abduction. In: Proc of. the 16th Int. Conf. on Very Large Data Bases (VLDB), pp. 650–661. Brisbane, Queensland, Australia (1990)Google Scholar
  48. 48.
    de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1984)Google Scholar
  49. 49.
    de Kleer, J., Williams, B.C.: Diagnosis with Behavioral Modes, pp. 124–130 (1992)Google Scholar
  50. 50.
    Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lin, F., You, J.H.: Abduction in logic programming: a new definition and an abductive procedure based on rewriting. Artif. Intell. 140(1–2), 175–205 (2002)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Coop. Inf. Syst. 7(1), 55–76 (1998)CrossRefGoogle Scholar
  54. 54.
    Littman, M.L., Goldsmith, J., Mundhenk. M.: The computational complexity of probabilistic planning. JAIR 9, 1–36 (1998)MathSciNetMATHGoogle Scholar
  55. 55.
    Lobo, J., Mendez, G., Taylor, S.R.: Adding knowledge to the action description language a. In: Proc. of the 14th Conf. on Artificial Intelligence and 9th Conf. on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 454–459 (1997)Google Scholar
  56. 56.
    Lobo. J.: COPLAS: a COnditional PLannner with Sensing Actions. In: FS-98-02. AAAI (1998)Google Scholar
  57. 57.
    Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: Proc. of 11th Int. Conf. on Database Theory (ICDT), pp. 179–193 (2007)Google Scholar
  58. 58.
    Makinson, D.: Screened revision. Theoria 63, 14–23 (1997)MathSciNetCrossRefGoogle Scholar
  59. 59.
    McIlraith, S.: Representing action and state constraints in model-based diagnosis. In: Proc. of the 14th Conf. on Artificial Intelligence and 9th Conf. on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 43–49 (1997)Google Scholar
  60. 60.
    Moore, R.C.: A formal theory of knowledge and action. In: Hobbs, J.R., Moore, R.C. (eds.) Formal Theories of the Common Sense World, pp. 319–358 (1985)Google Scholar
  61. 61.
    Nebel, B., Koehler, J.: Plan reuse versus plan generation: a theoretical and empirical analysis. Artif. Intell. 76(1–2), 427–454 (1995)CrossRefGoogle Scholar
  62. 62.
    Niemelä, I., Simons, P.: Smodels: an implementation of the stable model and well-founded semantics for normal LP. In: Proc. of the 4th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp. 420–429 (1997)Google Scholar
  63. 63.
    Otero, M., Otero, R.P.: Using causality and actions for diagnosis. In: Proc. of 11th Int. Workshop on Principles of Diagnosis, pp. 171–176 (2000)Google Scholar
  64. 64.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, Mass (1994)MATHGoogle Scholar
  65. 65.
    Poole, D.: Representing knowledge for logic-based diagnosis. In: Proc. of the Int. Conf. on Fifth Generation Computing Systems, pp. 1282–1290 (1988)Google Scholar
  66. 66.
    Poole, D.: Normality and faults in logic-based diagnosis. In: Proc. of the 11th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 1304–1310 (1989)Google Scholar
  67. 67.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–96 (1987)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Rintanen. J.: Constructing conditional plans by a theorem prover. JAIR 10, 323–352 (2000)Google Scholar
  69. 69.
    Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artif. Intell. 144(1–2), 1–39 (2003)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Selman, A.L.: A taxonomy of complexity classes of functions. J. Comput. Syst. Sci. 48(2), 357–381 (1994)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Scherl, R., Levesque, H.J.: Knowledge producing actions. In: Proc. of the 9th Int. Conf. on Knowledge Representation and Reasoning (KR), pp. 1139–1146 (1994)Google Scholar
  72. 72.
    Son, T., Tu, P., Baral, C.: Planning with sensing actions and incomplete information using logic programming. In: Proc. of the 7th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp. 261–274 (2004)Google Scholar
  73. 73.
    Son, T.C., Baral, C.: Formalizing sensing actions a transition function based approach. Artif. Intell. 125(1–2), 19–91 (2001)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Son, T.C., Tu, P.H., Baral, C.: Planning with sensing actions and incomplete information using logic programming. In: Proc. of the 7th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp. 261–274 (2004)Google Scholar
  75. 75.
    Son, T.C., Tu, P.H., Baral, C.: Reasoning and planning with sensing actions, incomplete information, and static causal laws using answer set programming. Theory Pract. Log. Program. 7(4), 377–450 (2007)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Staworko, S., Chomicki, J., Marcinkowski, J.: Preference-driven querying of inconsistent relational databases. In: Proc. of EDBT Workshops, pp. 318–335 (2006)Google Scholar
  77. 77.
    Struss, P., Dressler, O.: “Physical negation”—integrating fault models into the general diagnosis engine. In: Proc. of the 11th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 1318–1323 (1989)Google Scholar
  78. 78.
    Subrahmanian, V.S., Amgoud, L.: A general framework for reasoning about inconsistency. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 599–504 (2007)Google Scholar
  79. 79.
    Thielscher, M.: A theory of dynamic diagnosis. Electron. Trans. Numer. Anal. 1, 73–104 (1997)MathSciNetGoogle Scholar
  80. 80.
    Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3), 722–768 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fabrizio Angiulli
    • 1
  • Gianluigi Greco
    • 2
  • Luigi Palopoli
    • 1
  1. 1.DEISUniversità della CalabriaRendeItaly
  2. 2.Dip. di MatematicaUniversità della CalabriaRendeItaly

Personalised recommendations