Towards an environment interface standard for agent platforms

  • Tristan M. BehrensEmail author
  • Koen V. Hindriks
  • Jürgen Dix


We introduce an interface for connecting agent platforms to environments. This interface provides generic functionality for executing actions and for perceiving changes in an agent’s environment. It also provides support for managing an environment, e.g., for starting, pausing and terminating it. Among the benefits of such an interface are (1) standard functionality is provided by the interface implementation itself, and (2) agent platforms that support the interface can connect to any environment that implements the interface. This significantly reduces effort required from agent and environment programmers as the environment code needed to implement the interface needs to be written only once. We propose that the interface presented may be used as a standard that enables agents to control entities in environments. Our starting point for designing such a generic interface is based on a careful study of the various interfaces used by different agent programming languages to connect agent programs to environments. We discuss several case studies that use our interface (an elevator simulator, the well-known agent contest, and an implementation of the interface to connect agents to bots in Unreal Tournament 2004).


Agent Environment Interface 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    JACK. Agent oriented software group. Accessed 30 Jan 2010
  2. 2.
    RobocupRescue. Accessed 30 Jan 2010
  3. 3.
    Elevator simulator homepage.
  4. 4.
    Best, B.J., Lebiere, C.: Teamwork, communication, and planning in ACT-R. In: Proc. of the IJCAI Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions, pp. 64–72 (2003)Google Scholar
  5. 5.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in Agent Speak using Jason (Wiley Series in Agent Technology). Wiley, New York (2007)Google Scholar
  6. 6.
    Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: a BDI-agent system combining middleware and reasoning. In: Unland, V.R., Klusch, M., Calisti, M. (eds.) Software Agent-Based Applications, Platforms and Development Kits (2005)Google Scholar
  7. 7.
    Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S.J., Bryson, J.: POSH tools for game agent development by students and non-programmers. In: Proc. of the 9th Computer Games Conference (CGAMES’06), pp. 126–133 (2006)Google Scholar
  8. 8.
    Burkert, O., Kadlec, R., Gemrot, J., Bída, M., Havlíèek, J., Dörfler, M., Brom, C.: Towards fast prototyping of IVAs behavior: Pogamut 2. In: Proceedings of the Seventh International Conference on Intelligent Virtual Humans (IVA’07) (2007)Google Scholar
  9. 9.
    Dastani, M., Dix, J., Novák, P.: Agent contest competition, 3rd edn. In: Dastani, M., Ricci, A., El Fallah Seghrouchni, A., Winikoff, M. (eds.) Proceedings of ProMAS ’07. Revised Selected and Invited Papers. Lecture Notes in Artificial Intelligence, no. 4908. Springer, Honululu (2008)Google Scholar
  10. 10.
    Dastani, M., et al.: 2APL Manual.
  11. 11.
    Jacobs, S., Ferrein, A., Ferrein, E., Lakemeyer, G.: Unreal GOLOG Bots. In: Proceedings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games, pp. 31–36 (2005)Google Scholar
  12. 12.
    Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A., Scholer, A., Tejada, S.: Gamebots: a flexible test bed for multiagent team research. Commun. ACM 45(1), 43–45 (2002)CrossRefGoogle Scholar
  13. 13.
    Kim, I.C.: UTBot: A virtual agent platform for teaching agent system design. Journal of Multimedia 2(1), 48–53 (2007)CrossRefGoogle Scholar
  14. 14.
    Köster, M., Novák, P., Mainzer, D., Fuhrmann, B.: Two case studies for jazzyk bsm. In: Dignum, F., Bradshaw, J.M., Silverman, B.G., van Doesburg, W.A. (eds.) AGS. Lecture Notes in Computer Science, vol. 5920, pp. 33–47. Springer (2009)Google Scholar
  15. 15.
    Laird, J.E.: Using a computer game to develop advanced AI. Computer 34(7), 70–75 (2001)CrossRefGoogle Scholar
  16. 16.
    Laird, J.E.: Extending the soar cognitive architecture. In: Wang, P., Goertzel, B., Franklin, S. (eds.) AGI. Frontiers in Artificial Intelligence and Applications, vol. 171, pp. 224–235. IOS Press (2008)Google Scholar
  17. 17.
    Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S., Jones, B., Kerfoot, A., Lauver, C., Magerko, B., Sheiman, J., Stokes, D., Wallace, S.: A test bed for developing intelligent synthetic characters. In: Spring Symposium on Artificial Intelligence and Interactive Entertainment (AAAI’02) (2002)Google Scholar
  18. 18.
    Laird, J.E., Newell, A., Rosenbloom, P.: Soar: an architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Magerko, B., Laird, J.E., Assanie, M., Kerfoot, A., Stokes, D.: AI characters and directors for interactive computer games. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 877–883. AAAI Press/The MIT Press (2004)Google Scholar
  20. 20.
    Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge (2000)Google Scholar
  21. 21.
    Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982)CrossRefGoogle Scholar
  22. 22.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)CrossRefGoogle Scholar
  23. 23.
    Partington, S.J., Bryson, J.J.: The behavior oriented design of an unreal tournament character. In: Panayiotopoulos, T., Gratch, J., Aylett, R., Ballin, D., Olivier, P., Rist, T. (eds.) Intelligent Virtual Agents (IVA’05), pp. 466–477 (2005)Google Scholar
  24. 24.
    Pasman, W.: GOAL IDE User Manual.
  25. 25.
    Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J., Dastani, M.: Integrating artifact-based environments with heterogeneous agent-programming platforms. In: 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-08), pp. 225–232. IFAAMAS (2008)Google Scholar
  26. 26.
    Ricci, A., Viroli, M., Omicini, A.: CArtAgO: a framework for prototyping artifact-based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) Environments for MultiAgent Systems III, pp. 67–86. Springer (2007). doi: 10.1007/978-3-540-71103-2_4
  27. 27.
    Russell, S.J., Norvig: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall (2003)Google Scholar
  28. 28.
    (SISC), S.I.S.C.: IEEE Standard for Modeling and Simulation (M & S) High Level Architecture (HLA)—Framework and Rules (2000). doi: 10.1109/IEEESTD.2000.92296
  29. 29.
    Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.: Innovations in multi-agent systems. J. Netw. Comput. Appl. 30(3), 1089–1115 (2007)CrossRefGoogle Scholar
  30. 30.
    Wang, D., Subagdja, B., Tan, A.H., Ng, G.W.: Creating human-like autonomous players in real-time first person shooter computer games. In: Proc. of the 21st Conference on Innovative Applications of Artificial Intelligence (IAAI’09) (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tristan M. Behrens
    • 1
    Email author
  • Koen V. Hindriks
    • 2
  • Jürgen Dix
    • 1
  1. 1.Technical University of ClausthalClausthalGermany
  2. 2.Technical University DelftDelftThe Netherlands

Personalised recommendations