Analyzing bandit-based adaptive operator selection mechanisms
- 362 Downloads
- 58 Citations
Abstract
Several techniques have been proposed to tackle the Adaptive Operator Selection (AOS) issue in Evolutionary Algorithms. Some recent proposals are based on the Multi-armed Bandit (MAB) paradigm: each operator is viewed as one arm of a MAB problem, and the rewards are mainly based on the fitness improvement brought by the corresponding operator to the individual it is applied to. However, the AOS problem is dynamic, whereas standard MAB algorithms are known to optimally solve the exploitation versus exploration trade-off in static settings. An original dynamic variant of the standard MAB Upper Confidence Bound algorithm is proposed here, using a sliding time window to compute both its exploitation and exploration terms. In order to perform sound comparisons between AOS algorithms, artificial scenarios have been proposed in the literature. They are extended here toward smoother transitions between different reward settings. The resulting original testbed also includes a real evolutionary algorithm that is applied to the well-known Royal Road problem. It is used here to perform a thorough analysis of the behavior of AOS algorithms, to assess their sensitivity with respect to their own hyper-parameters, and to propose a sound comparison of their performances.
Keywords
Parameter control Adaptive Operator Selection Multi-Armed BanditsMathematics Subject Classifications (2010)
68T05 68W40Preview
Unable to display preview. Download preview PDF.
References
- 1.Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multi-armed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)zbMATHCrossRefGoogle Scholar
- 2.Barbosa, H.J.C., Sá, A.M.: On adaptive operator probabilities in real coded genetic algorithms. In: XX Intl. Conference of the Chilean Computer Science Society (2000)Google Scholar
- 3.Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: McKay, B. (ed.) Proc. Congress on Evolutionary Computation, pp. 773–780. IEEE (2005)Google Scholar
- 4.Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proc. Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann (2002)Google Scholar
- 5.Collet, P., Schoenauer, M.: GUIDE: unifying evolutionary engines through a graphical user interface. In: Liardet, P., et al. (eds.) Proc. Intl. Conference on Artificial Evolution. LNCS, vol. 2936, pp. 203–215. Springer (2003)Google Scholar
- 6.Conover, W.J.: Practical Nonparametric Statistics. Wiley (1999)Google Scholar
- 7.Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Keijzer, M., et al. (eds.) Proc. Genetic and Evolutionary Computation Conference, pp. 913–920. ACM (2008)Google Scholar
- 8.Davis, L.: Adapting operator probabilities in genetic algorithms. In: Schaffer, J.D. (ed.) Proc. Intl. Conference on Genetic Algorithms, pp. 61–69. Morgan Kaufmann (1989)Google Scholar
- 9.DeJong, K.: Evolutionary Computation. A unified Approach. MIT (2006)Google Scholar
- 10.DeJong, K.: Parameter setting in EAs: a 30 year perspective. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54, pp. 1–18. Springer (2007)Google Scholar
- 11.Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in Evolutionary Algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
- 12.Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54, pp. 19–46. Springer (2007)Google Scholar
- 13.Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
- 14.Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive operator selection. In: Rudolph, G., et al. (eds.) Proc. Intl. Conference on Parallel Solving from Nature. LNCS, vol. 5199, pp. 175–184. Springer (2008)Google Scholar
- 15.Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and extreme value-based rewards for adaptive operator selection in evolutionary algorithms. In: Stützle, T. (ed.) Proc. 3rd Intl. Conference on Learning and Intelligent Optimization. LNCS, vol. 5851, pp. 176–190. Springer (2009)Google Scholar
- 16.Fialho, A., Schoenauer, M., Sebag, M.: Analysis of adaptive operator selection techniques on the royal road and long k-path problems. In: Raidl, G., et al. (eds.) Proc. Genetic and Evolutionary Computation Conference, pp. 779–786. ACM (2009)Google Scholar
- 17.Fogel, D.B.: Phenotypes, genotypes and operators in evolutionary computation. In: Proc. Intl. Conference on Evolutionary Computation. IEEE (1995)Google Scholar
- 18.Gagliolo, M., Schmidhuber, J.: Algorithm Selection as a Bandit Problem with Unbounded Losses. Tech. Rep. IDSIA-07-08, IDSIA (2008)Google Scholar
- 19.Goldberg, D.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach. Learn. 5(4), 407–426 (1990)Google Scholar
- 20.Gould, S., Eldredge, N.: Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2), 115–151 (1977)Google Scholar
- 21.Hartland, C., Baskiotis, N., Gelly, S., Teytaud, O., Sebag, M.: Change point detection and meta-bandits for online learning in dynamic environments. In: Proc. Conférence Francophone sur l’Apprentissage Automatique (2007)Google Scholar
- 22.Hartland, C., Gelly, S., Baskiotis, N., Teytaud, O., Sebag, M.: Multi-armed bandit, dynamic environments and meta-bandits. In: Online Trading of Exploration and Exploitation Workshop, NIPS (2006)Google Scholar
- 23.Hinkley, D.: Inference about the change point from cumulative sum-tests. Biometrika 58(3), 509–523 (1970)CrossRefMathSciNetGoogle Scholar
- 24.Holland, J.H.: Royal road functions. In: Internet Genetic Algorithms Digest, vol. 7, p. 22. Massachusetts Institute of Technology (1993)Google Scholar
- 25.Jones, T.: A description of Holland’s Royal Road. Evol. Comput. 2(4), 409–415 (1994)CrossRefGoogle Scholar
- 26.Julstrom, B.: What have you done for me lately? Adapting operator probabilities in a steady-state genetic algorithm. In: Eshelman, L.J., et al. (eds.) Proc. Intl. Conference on Genetic Algorithms, pp. 81–87. Morgan Kaufmann (1995)Google Scholar
- 27.Kallel, L., Schoenauer, M.: Fitness Distance Correlation for Variable Length Representations. Tech. Rep. 363, CMAP, Ecole Polytechnique (1996)Google Scholar
- 28.Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
- 29.Lobo, F., Goldberg, D.: Decision making in a hybrid genetic algorithm. In: Porto, B. (ed.) Proc. Intl. Conference on Evolutionary Computation, pp. 121–125. IEEE (1997)Google Scholar
- 30.Lobo, F., Lima, C., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer (2007)Google Scholar
- 31.Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M.: Extreme compass and dynamic multi-armed bandits for adaptive operator selection. In: Proc. Congress on Evolutionary Computation, pp. 365–372. IEEE (2009)Google Scholar
- 32.Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for evolutionary algorithms. Journal of Heuristics (2010). doi: 10.1007/s10732-010-9125-3 Google Scholar
- 33.Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., et al. (eds.) Proc. Intl. Conference on Parallel Solving from Nature. LNCS, vol. 5199, pp. 256–265. Springer (2008)Google Scholar
- 34.Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, New York (1996)zbMATHGoogle Scholar
- 35.Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: fitness landscapes and GA performance. In: Proc. European Conference on Artificial Life, pp. 245–254 (1992)Google Scholar
- 36.Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Veloso, M. (ed.) Proc. Intl. Joint Conference on Artificial Intelligence, pp. 975–980 (2007)Google Scholar
- 37.Quick, R.J., Rayward-Smith, V.J., Smith, G.D.: The royal road functions: description, intent and experimentation. In: Selected Papers from AISB Workshop on Evolutionary Computing. LNCS, vol. 1143, pp. 223–235. Springer (1996)Google Scholar
- 38.Spears, W.: Adapting crossover in evolutionary algorithms. In: McDonnell, J.R., et al. (eds.) Proc. Conference on Evolutionary Programming, pp. 367–384. MIT (1995)Google Scholar
- 39.Stützle, T. (ed.): Proc. 3rd Intl. Conference on Learning and Intelligent Optimization. LNCS, vol. 5851. Springer (2009)Google Scholar
- 40.Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Beyer, H.G. (eds.) Proc. Genetic and Evolutionary Computation Conference, pp. 1539–1546. ACM (2005)Google Scholar
- 41.Thierens, D.: Adaptive strategies for operator allocation. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54, pp. 77–90. Springer (2007)Google Scholar
- 42.Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evol. Comput. 6(2), 161–184 (1998)CrossRefGoogle Scholar
- 43.Whitacre, J., Pham, T., Sarker, R.: Use of statistical outlier detection method in adaptive evolutionary algorithms. In: Keijzer, M. (ed.) Proc. Genetic and Evolutionary Computation Conference, pp. 1345–1352. ACM (2006)Google Scholar
- 44.Yu, T., Davis, D., Baydar, C., Roy, R. (eds.): Evolutionary Computation in Practice. Studies in Computational Intelligence, vol. 88. Springer (2008)Google Scholar
- 45.Yuan, B., Gallagher, M.: Statistical racing techniques for improved empirical evaluation of evolutionary algorithms. In: Yao, X., et al. (eds.) Proc. Intl. Conference on Parallel Solving from Nature. LNCS, vol. 3242, pp. 172–181. Springer (2004)Google Scholar