Two hemispheres—two networks: a computational model explaining hemispheric asymmetries while reading ambiguous words

  • Orna Peleg
  • Larry ManevitzEmail author
  • Hananel Hazan
  • Zohar Eviatar


A computational model for reading that takes into account the different processing abilities of the two cerebral hemispheres is presented. This dual hemispheric reading model closely follows the original computational lines due to Kowamoto (J Mem Lang 32:474–516, 1993) but postulates a difference in architecture between the right and left hemispheres. Specifically it is assumed that orthographic, phonological and semantic units are completely connected in the left hemisphere, while there are no direct connections between phonological and orthographic units in the right hemisphere. It is claimed that this architectural difference results in hemisphere asymmetries in resolving lexical ambiguity and more broadly in the processing of written words. Simulation results bear this out. First, we show that the two networks successfully simulate the time course of lexical selection in the two cerebral hemispheres. Further, we were able to see a computational advantage of two separate networks, when information is transferred from the right hemisphere network to the left hemisphere network. Finally, beyond reproducing known empirical data, this dual hemispheric reading model makes novel and surprising predictions that were found to be consistent with new human data.


Disambiguation of natural language Simulation Neural networks Corpus collusum Modeling Brain hemispheres 

Mathematics Subject Classifications (2010)

68T50 92b20 68t05 68-04 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banich, M.T.: The divided visual field technique in laterality and interhemispheric integration. In: Hughdahl, K. (ed.) Experimental Methods in Neuropsychology, pp. 47–64. Kluwer, New York (2003)Google Scholar
  2. 2.
    Baynes, K., Eliassen, J.C.: The visual lexicon: its access and organization in commissurotomy patients. Right hemisphere language comprehension: perspectives from cognitive neuroscience. In: Beeman, M., Chiarello, C. (eds.) Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience. Erlbaum, Mahwah (1998)Google Scholar
  3. 3.
    Beeman, M., Friedman, R., Grafman, J., Perez, E., Diamond, S., Lindsay, M.: Summation priming and coarse coding in the right hemisphere. J. Cogn. Neurosci. 6, 26–45 (1994)CrossRefGoogle Scholar
  4. 4.
    Beeman, M.J.: Bilateral brain processes for comprehending natural language. Trends Cogn. Sci. 9, 512–518 (2005)CrossRefGoogle Scholar
  5. 5.
    Beeman, M.J., Chiarello, C.: Approximation by superpositions of a sigmoidal function. Complementary right and left hemisphere language comprehension. Curr. Dir. Psychol. Sci. 7, 2–8 (1998)CrossRefGoogle Scholar
  6. 6.
    Burgess, C., Lund, K.: Modeling cerebral asymmetries of semantic memory using high-dimensional semantic space. In: Beeman, M., Chiarello, C. (eds.) Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience. Erlbaum, Hillsdale (1998)Google Scholar
  7. 7.
    Burgess, C., Simpson, G.B.: Cerebral hemispheric mechanisms in the retrieval of ambiguous word meanings. Brain Lang. 33, 86–103 (1988)CrossRefGoogle Scholar
  8. 8.
    Coulson, S., Federmeier, K., Van Petten, C., Kutas, M.: Right hemisphere sensitivity to word and sentence-level context. J. Exper. Psychol., Learn., Mem., Cogn. 31, 129–147 (2005)CrossRefGoogle Scholar
  9. 9.
    Coulson, S., Williams, R.W.: Hemispheric asymmetries and joke comprehension. Neuropsychologia 43, 128–141 (2005)CrossRefGoogle Scholar
  10. 10.
    Duffy, S.A., Morris, R.K., Rayner, K.: Lexical ambiguity and fixation times in reading. J. Mem. Lang. 27, 429–446 (1988)CrossRefGoogle Scholar
  11. 11.
    Eviatar, Z., Just, M.A.: Brain correlates of discourse processing: an FMRI investigation of irony and metaphor comprehension. Neuropsychologia 44, 2348–2359 (2006)CrossRefGoogle Scholar
  12. 12.
    Faust, M.: Obtaining evidence of language comprehension from sentence priming. In: Beeman, M., Chiarello, C. (eds.) Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience, pp. 161–186. Erlbaum, Hillsdale (1998)Google Scholar
  13. 13.
    Faust, M., Chiarello, C.: Sentence context and lexical ambiguity resolution by the two hemispheres. Neuropsychologia 36, 827–835 (1998)CrossRefGoogle Scholar
  14. 14.
    Faust, M.E., Gernsbacher, M.A.: Cerebral mechanisms for suppression of inappropriate information during sentence comprehension. Brain Lang. 53, 234–259 (1996)CrossRefGoogle Scholar
  15. 15.
    Faust, M.E., Gernsbacher, M.A.: Right words and left words: electrophysiological evidence for hemispheric differences in meaning processing. Cogn. Brain Res. 8, 373–392 (1999)CrossRefGoogle Scholar
  16. 16.
    Ferrand, L., Grainger, J.: Phonology and orthography in visual word recognition: evidence from masked nonword priming. Q. J. Exp. Psychol. 45A, 353–372 (1992)Google Scholar
  17. 17.
    Ferrand, L., Grainger, J.: The time-course of phonological and orthographic code activation in the early phases of visual word recognition. Bull. Psychon. Soc. 31, 119–122 (1993)Google Scholar
  18. 18.
    Fiorentini, A., Berardi, N.: Visual perceptual learning: a sign of neural plasticity at early stages of visual processing. Arch. Ital. Bio. 135, 157–167 (1997)Google Scholar
  19. 19.
    Frost, R.: Toward a strong phonological theory of visual word recognition: true issues and false trails. Psychol. Bull. 123, 71–99 (1998)CrossRefGoogle Scholar
  20. 20.
    Giora, R., Zaidel, E., Soroker, N., Batori, G., Kasher, A.: Differential effect of right and left hemispheric damage on understanding sarcasm and metaphor. Metaphor Symb. 15, 63–83 (2000)CrossRefGoogle Scholar
  21. 21.
    Grindrod, C.M., Baum Shari, R.: Sensitivity to local sentence context information in lexical ambiguity resolution: evidence from left- and right-hemisphere-damaged individuals. Brain Lang. 85, 503–523 (2003)CrossRefGoogle Scholar
  22. 22.
    Halderman, L.K., Chiarello, C.: Cerebral asymmetries in early orthographic and phonological reading processes: evidence from backward masking. Brain Lang. 95, 342–352 (2005)CrossRefGoogle Scholar
  23. 23.
    Harm, M.W., Seidenberg, M.S.: Computing the meanings of words in reading: cooperative division of labor between visual and phonological processes. Psychol. Rev. 111, 662–720 (2004)CrossRefGoogle Scholar
  24. 24.
    Hinton, G., Shallice, T.: Lesioning an attractor network: investigations of acquired dyslexia. Psychol. Rev. 98(1), 74–95 (1991)CrossRefGoogle Scholar
  25. 25.
    Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Iacoboni, M., Zaidel, E.: Hemispheric independence in word recognition: evidence from unilateral and bilateral presentations. Brain Lang. 53, 121–140 (1996)CrossRefGoogle Scholar
  27. 27.
    Kawamoto, A.H.: Nonlinear dynamics in the resolution of lexical ambiguity: a parallel distributed processing account. J. Mem. Lang. 32, 474–516 (1993)CrossRefGoogle Scholar
  28. 28.
    Kello, C.T., Plaut, D.C.: Strategic control over rate of processing in word reading: a computational investigation. J. Mem. Lang. 48, 207–232 (2003)CrossRefGoogle Scholar
  29. 29.
    Lavidor, M., Ellis, A.W.: Orthographic and phonological priming in the two cerebral hemispheres. Laterality 8, 201–223 (2003)Google Scholar
  30. 30.
    Manevitz, L.M., Zemach, Y.: Assigning meaning to data: using sparse distributed memory for multilevel cognitive tasks. Neurocomputing 14(1), 15–39 (1997)CrossRefGoogle Scholar
  31. 31.
    Marsolek, C.J., Kosslyn, S.M., Squire, L.R.: Form-specific visual priming in the right cerebral hemisphere. J. Exper. Psychol., Learn., Mem., Cogn. 18, 492–508 (1992)CrossRefGoogle Scholar
  32. 32.
    Marsolek, C.J., Schacter, D.L., Nicholas, C.D.: Form-specific visual priming for new associations in the right cerebral hemisphere. Mem. Cogn. 24, 539–556 (1996)Google Scholar
  33. 33.
    Mashal, N., Faust, M., Hendler, T.: The role of the right hemisphere in processing nonsalient metaphorical meanings: application of principal components analysis to FMRI data. Neuropsychologia 43(14), 2084–2100 (2005)CrossRefGoogle Scholar
  34. 34.
    Mason, R.A., Just, M.A.: Lexical ambiguity in sentence comprehension. Brain Res. 1146, 115–127 (2007)CrossRefGoogle Scholar
  35. 35.
    McDonald, S.: Clinical insights into pragmatic theory: frontal lobe deficits and sarcasm. Brain Lang. 53, 81–104 (1996)CrossRefGoogle Scholar
  36. 36.
    McDonald, S.: Exploring the process of inference generation in sarcasm: a review of normal and clinical studies. Brain Lang. 68, 486–506 (1999)CrossRefGoogle Scholar
  37. 37.
    Peleg, O., Eviatar, Z.: Hemispheric sensitivities to lexical and contextual constraints: evidence from ambiguity resolution. Brain Lang. 105(2), 71–82 (2008)CrossRefGoogle Scholar
  38. 38.
    Peleg, O., Eviatar, Z., Hazan, H., Manevitz, L.: Differences and interactions between cerebral hemisphers when processing ambiguous homographs. In: Paletta, L., Rome, E. (eds.) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. Lecture Notes in Artificial Intelligence, vol. 4840. A Subseries of Lecture Notes in Computer Science. Springer (2008)Google Scholar
  39. 39.
    Peleg, O., Giora, R., Fein, O.: Salience and context effects: two are better than one. Metaphor Symb. 16, 173–192 (2001)CrossRefGoogle Scholar
  40. 40.
    Peleg, O., Giora, R., Fein, O.: Contextual strength: the whens and hows of context effects. In: Noveck, I., Sperber, D. (eds.) Experimental Pragmatics, pp. 172–186. Pagrave, Basingstoke (2004)Google Scholar
  41. 41.
    Peleg, O., Eviatar, Z.: Semantic asymmetries are modulated by phonological asymmetries: evidence from the disambiguation of homophonic versus heterophonic homographs. Brain Cogn. 70, 154–162 (2009)CrossRefGoogle Scholar
  42. 42.
    Plaut, D.C.: Lesioning attractor networks as models of neuropsychological deficits. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 540–543. MIT Press (1995)Google Scholar
  43. 43.
    Plaut, D.C.: Relearning after damage in connectionist networks: toward a theory of rehabilitation. Brain Lang. 52, 25–82 (1996)CrossRefGoogle Scholar
  44. 44.
    Plaut, D.C., McClelland, J.L., Seidenberg, M.S., Patterson, K.: Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol. Rev. 103, 56–115 (1996)CrossRefGoogle Scholar
  45. 45.
    Plaut, D.C., Shallice, T.: Deep dyslexia: a case study of connectionist neuropsychology. Cogn. Neuropsychol. 10, 377–500 (1993)CrossRefGoogle Scholar
  46. 46.
    Seidenberg, M.S., McClelland, J.I.: A distributed, developmental model of word recognition and naming. Psychol. Rev. 96, 523–568 (1989)CrossRefGoogle Scholar
  47. 47.
    Sejnowski, T.J., Rosenberg, C.R.: Nettalk: a parallel network that learns to read aloud. Cogn. Sci. 14, 179–211 (1986)Google Scholar
  48. 48.
    Simpson, G.B.: Context and the processing of ambiguous words. In: Gernsbacher, M.A. (ed.) Handbook of Psycholinguistics, pp. 359–374. Academic, San Diego (1984)Google Scholar
  49. 49.
    Simpson, G.B.: Lexical ambiguity and its role in models of word recognition. Psychol. Bull. 96, 316–340 (1984)CrossRefGoogle Scholar
  50. 50.
    Small, S.I., Cottrell, G.W., Tanenhaus, M.K.: Lexical ambiguity resolution: perspectives from psycholinguistics. In: Neuropsychology, and Artificial Intelligence. Morgan Kaufmann, San Mateo (1988)Google Scholar
  51. 51.
    Smolka, E., Eviatar, Z.: Phonological and orthographic visual word recognition in the two cerebral hemispheres: evidence from Hebrew. Cogn. Neuropsychol. 23(6), 972–989(18) (2006)CrossRefGoogle Scholar
  52. 52.
    Thivierge, J.P., Titone, D., Shultz, T.R.: Simulating Frontotemporal Pathways Involved in Lexical Ambiguity Resolution (2005)Google Scholar
  53. 53.
    Titone, D.A.: Hemispheric differences in context sensitivity during lexical ambiguity resolution. Brain Lang. 65, 361–394 (1998)CrossRefGoogle Scholar
  54. 54.
    Tompkins, C.A., Lehman, M.T.: Interpreting intended meanings after right hemisphere brain damage: an analysis of evidence, potential account, and clinical implications. Top. Stroke Rehabil. 5, 29–47 (1998)CrossRefGoogle Scholar
  55. 55.
    Van Orden, G.C., Kloos, H.: The question of phonology and reading. In: Snowling, M.S., Hulme, C., Seidenberg, M. (eds.) The Science of Reading: A Handbook, pp. 39–60. Blackwell (2005)Google Scholar
  56. 56.
    Weems, S.A., Reggia, J.A.: Hemispheric specialization and independence for word recognition: a comparison of three computational models. Brain Lang. 89, 554–568 (2004)CrossRefGoogle Scholar
  57. 57.
    Zaidel, E.: Reading in the disconnected right hemisphere: an aphasiological perspective. In: Zotterman, Y. (ed.) Dyslexia: Neuronal, Cognitive and Linguistic Aspects, vol. 35, pp. 67–91. Pergamon, Oxford (1982)Google Scholar
  58. 58.
    Zaidel, E.: The Dual Brain. Hemispheric Specialization in Humans. The Guildford Press, New York (1985)Google Scholar
  59. 59.
    Zaidel, E.: Language in the disconnected right hemisphere encyclopedia of neuroscience. In: Encyclopedia of Neuroscience, vol. 89, pp. 563–564. Birkhauser, Cambridge (1987)Google Scholar
  60. 60.
    Zaidel, E.: Language functions in the two hemispheres following cerebral commissurotomy and hemispherectomy. In: Handbook of Neuropsychology, vol. 4, pp. 115–150. Elsevier, Amsterdam (1990)Google Scholar
  61. 61.
    Zaidel, E.: Language in the right hemisphere following callosal disconnection. In: Stemmer, B., Whitaker, H. (eds.) Handbook of Neuropsychology, vol. 89, pp. 369–383. Academic, New York (1998)Google Scholar
  62. 62.
    Zaidel, E., Peters, A.M.: Phonological encoding and ideographic reading by the disconnected right hemisphere: two case studies. Brain Lang. 14, 205–234 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Orna Peleg
    • 1
  • Larry Manevitz
    • 2
    Email author
  • Hananel Hazan
    • 2
  • Zohar Eviatar
    • 1
  1. 1.Institute of Information Processing and Decision MakingUniversity of HaifaHaifaIsrael
  2. 2.Department of Computer ScienceUniversity of HaifaHaifaIsrael

Personalised recommendations