Parallel algorithm for computing fixpoints of Galois connections

Article

Abstract

This paper presents a parallel algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. The algorithm results as a parallelization of CbO (Kuznetsov 1999) in which we process disjoint sets of fixpoints simultaneously. One of the distinctive features of the algorithm compared to other parallel algorithms is that it avoids synchronization which has positive impacts on its speed and implementation. We describe the parallel algorithm, prove its correctness, and analyze its asymptotic complexity. Furthermore, we focus on implementation issues, scalability of the algorithm, and provide an evaluation of its efficiency on various data sets.

Keywords

Galois connection Fixpoint Formal concept Parallel algorithm 

Mathematics Subject Classifications (2010)

03G10 62H30 11Y16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asuncion, A., Newman, D: UCI Machine learning repository. School of Information and Computer Sciences, University of California, Irvine (2007)Google Scholar
  2. 2.
    Baklouti, F., Levy G.: A distributed version of the Ganter algorithm for general Galois Lattices. In: Belohlavek, R., Snasel, V. (eds.) Proc. CLA, pp. 207–221 (2005)Google Scholar
  3. 3.
    Belohlavek, R., Vychodil V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76, 3–20 (2010)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berry, A., Bordat, J.-P., Sigayret, A.: A local approach to concept generation. Ann. Math. Artif. Intell. 49, 117–136 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications. Wiley, New York (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Fu, H., Mephu Nguifo, E.: A Parallel Algorithm to Generate Formal Concepts for Large Data. ICFCA, LNCS 2961, 394–401 (2004)Google Scholar
  7. 7.
    Ganter, B.: Two basic algorithms in concept analysis. (Technical Report FB4-Preprint No. 831). TH Darmstadt (1984)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)MATHGoogle Scholar
  9. 9.
    Grätzer G. et al.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)MATHGoogle Scholar
  10. 10.
    Hettich, S., Bay, S.D.: The UCI KDD Archive University of California, Irvine, School of Information and Computer Sciences (1999)Google Scholar
  11. 11.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kengue J. F. D., Valtchev P., Djamégni C. T.: A parallel algorithm for lattice construction. ICFCA, LNCS 3403, 249–264 (2005)Google Scholar
  13. 13.
    Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Autom. Doc. Math. Linguist. 24(1), 37–45 (1989)Google Scholar
  14. 14.
    Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice (Быстрый алгоритм построения всех пересечений обIектов из конечной полурешетки, in Russian). Automatic Documentation and Mathematical Linguistics, 27(5), 11–21 (1993)Google Scholar
  15. 15.
    Kuznetsov, S.: Learning of simple conceptual graphs from positive and negative examples. PKDD, pp. 384–391 (1999)Google Scholar
  16. 16.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Lindig, C.: Fast concept analysis. Working with Conceptual Structures—Contributions to ICCS 2000, pp. 152–161. Shaker, Aachen (2000)Google Scholar
  18. 18.
    Norris, E.M.: An Algorithm for computing the maximal rectangles in a binary relation. Rev. Roum. Math. Pures. Appl. 23(2), 243–250 (1978)MATHMathSciNetGoogle Scholar
  19. 19.
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. Ordered Sets, pp. 445–470, Reidel, Dordrecht (1982)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations