An application of formal concept analysis to semantic neural decoding

  • Dominik Maria Endres
  • Peter Földiák
  • Uta Priss
Article

Abstract

This paper proposes a novel application of Formal Concept Analysis (FCA) to neural decoding: the semantic relationships between the neural representations of large sets of stimuli are explored using concept lattices. In particular, the effects of neural code sparsity are modelled using the lattices. An exact Bayesian approach is employed to construct the formal context needed by FCA. This method is explained using an example of neurophysiological data from the high-level visual cortical area STSa. Prominent features of the resulting concept lattices are discussed, including indications for hierarchical face representation and a product-of-experts code in real neurons. The robustness of these features is illustrated by studying the effects of scaling the attributes.

Keywords

Formal concept analysis FCA Neural code Sparse coding High-level vision STS Bayesian classification Semantic Neural decoding 

Mathematics Subject Classifications (2010)

06 92 62 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233(4771), 1416–1419 (1986)CrossRefGoogle Scholar
  2. 2.
    Földiák, P.: The ‘ideal homunculus’: statistical inference from neural population responses. In: Eeckmann, F., Bower, J. (eds.) Computation and Neural Systems, pp. 55–60. Kluwer, Norwell (1993)Google Scholar
  3. 3.
    Oram, M.W., Földiák, P., Perrett, D.I., Sengpiel, F.: The ‘ideal homunculus’: decoding neural population signals. Trends Neurosci. 21, 259–265 (1998)CrossRefGoogle Scholar
  4. 4.
    Quiroga, R.Q., Reddy, L., Koch, C., Fried, I.: Decoding visual inputs from multiple neurons in the human temporal lobe. J. Neurophysiol. 98(4), 1997–2007 (2007)CrossRefGoogle Scholar
  5. 5.
    Duda, O.R., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)MATHGoogle Scholar
  6. 6.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  7. 7.
    Földiák, P.: Sparse neural representation for semantic indexing. In: XIII Conference of the European Society of Cognitive Psychology (ESCOP-2003). http://www.st-andrews.ac.uk/~pf2/escopill2.pdf (2003)
  8. 8.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)Google Scholar
  9. 9.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)Google Scholar
  10. 10.
    Ganter, B., Stumme, G., Wille, R. (eds.): Formal concept analysis, foundations and applications. In: Lecture Notes in Computer Science, vol. 3626. Springer (2005)Google Scholar
  11. 11.
    Priss, U.: Formal concept analysis in information science. Annu. Rev. Inf. Sci. Technol. 40, 521–543 (2006)CrossRefGoogle Scholar
  12. 12.
    Földiák, P., Endres, D.: Sparse coding. Scholarpedia 3(1), 2984. http://www.scholarpedia.org/article/Sparse_coding (2008)CrossRefGoogle Scholar
  13. 13.
    Földiák, P.: Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64, 165–170 (1990)CrossRefGoogle Scholar
  14. 14.
    Földiák, P.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 1064–1068. MIT Press (2002)Google Scholar
  15. 15.
    Olshausen, B.A., Field, D.J., Pelah, A.: Sparse coding with an overcomplete basis set: a strategy employed by V1. Vis. Res. 37(23), 3311–3325 (1997)CrossRefGoogle Scholar
  16. 16.
    Olshausen, B.A.: Learning linear, sparse, factorial codes. Technical Report AIM 1580 (1996)Google Scholar
  17. 17.
    Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001)CrossRefGoogle Scholar
  18. 18.
    Rolls, E.T., Treves, A.: The relative advantages of sparse versus distributed encoding for neuronal networks in the brain. Netw. 1, 407–421 (1990)CrossRefGoogle Scholar
  19. 19.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, London, Cambridge (2001)MATHGoogle Scholar
  20. 20.
    Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987)Google Scholar
  21. 21.
    Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88, 455–463 (2002)Google Scholar
  22. 22.
    Földiák, P., Xiao, D., Keysers, C., Edwards, R., Perrett, D.I.: Rapid serial visual presentation for the determination of neural selectivity in area STSa. Prog. Brain Res. 144, 107–116 (2004)CrossRefGoogle Scholar
  23. 23.
    Oram, M.W., Perrett, D.I.: Time course of neural responses discriminating different views of the face and head. J. Neurophysiol. 68(1), 70–84 (1992)Google Scholar
  24. 24.
    Endres, D., Földiák, P.: Exact Bayesian bin classification: a fast alternative to bayesian classification and its application to neural response analysis. J. Comput. Neurosci. 24(1), 21–35 (2008). doi:10.1007/s10827-007-0039-5 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Endres, D.: Bayesian and information-theoretic tools for neuroscience. Ph.D. thesis, School of Psychology, University of St. Andrews, U.K. http://hdl.handle.net/10023/162 (2006)
  26. 26.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)Google Scholar
  27. 27.
    Hinton, G.E.: Products of experts. In: Ninth International Conference on Artificial Neural Networks ICANN 99, number 470 in ICANN (1999)Google Scholar
  28. 28.
    Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97(6), 4296–4309 (2007)CrossRefGoogle Scholar
  29. 29.
    Földiák, P.: Neural coding: non-local but explicit and conceptual. Curr. Biol. 19(19), R904–R906 (2009)CrossRefGoogle Scholar
  30. 30.
    Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L.: Identifying natural images from human brain activity. Nature 452, 352–255 (2008). doi:10.1038/nature06713 CrossRefGoogle Scholar
  31. 31.
    Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M., Morito, Y., Tanabe, H., Sadato, N., Kamitani, Y.: Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60, 915–929 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dominik Maria Endres
    • 1
  • Peter Földiák
    • 2
  • Uta Priss
    • 3
  1. 1.Section for Theoretical Sensomotorics, Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research and Center for Integrative NeuroscienceUniversity Clinic TübingenTübingenGermany
  2. 2.School of PsychologyUniversity of St AndrewsScotlandUK
  3. 3.School of ComputingEdinburgh Napier UniversityEdinburghUK

Personalised recommendations