On the isomorphism problem of concept algebras



Weakly dicomplemented lattices are bounded lattices equipped with two unary operations to encode a negation on concepts. They have been introduced to capture the equational theory of concept algebras (Wille 2000; Kwuida 2004). They generalize Boolean algebras. Concept algebras are concept lattices, thus complete lattices, with a weak negation and a weak opposition. A special case of the representation problem for weakly dicomplemented lattices, posed in Kwuida (2004), is whether complete weakly dicomplemented lattices are isomorphic to concept algebras. In this contribution we give a negative answer to this question (Theorem 4). We also provide a new proof of a well known result due to M.H. Stone (Trans Am Math Soc 40:37–111, 1936), saying that each Boolean algebra is a field of sets (Corollary 4). Before these, we prove that the boundedness condition on the initial definition of weakly dicomplemented lattices (Definition 1) is superfluous (Theorem 1, see also Kwuida (2009)).


Concept algebras Negation Weakly dicomplemented lattices Representation problem Boolean algebras Field of sets Formal concept analysis 

Mathematics Subject Classifications (2010)

03G10 03G05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boole, G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Macmillan 1854. Reprinted by Dover Publications, New York (1958)Google Scholar
  2. 2.
    Burgmann, C., Wille, R.: The basic theorem on preconcept lattices. In: Missaoui, R., Schmid, J. (eds.) Formal Concept Analysis, 4th International Conference, ICFCA 2006, Dresden, Germany, February 13–17, 2006, Proceedings. LNAI, vol. 3874, pp. 80–88. Springer, Berlin Heidelberg (2006)Google Scholar
  3. 3.
    Burmeister, P., Holzer, R.: Treating incomplete knowledge in formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis, Foundations and Applications. LNAI, vol. 3626, pp. 114–126. Springer (2005)Google Scholar
  4. 4.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer (1981)Google Scholar
  5. 5.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge (2002)Google Scholar
  6. 6.
    Deiters, K., Erné, M.: Negations and contrapositions of complete lattices. Discrete Math. 181(1–3), 91–111 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dilworth, R.P.: Lattices with unique complements. Trans. Am. Math. Soc. 57, 123–154 (1945)MATHMathSciNetGoogle Scholar
  8. 8.
    Ferré, S.: Negation, opposition, and possibility in logical concept analysis. In: Missaoui, R., Schmid, J. (eds.) Formal Concept Analysis, 4th International Conference, ICFCA 2006, Dresden, Germany, February 13–17, 2006, Proceedings. LNAI, vol. 3874, pp. 130–145. Springer (2006)Google Scholar
  9. 9.
    Ganter, B., Kwuida, L.: Finite distributive concept algebras. Order 23 235–248 (2006). doi: 10.1007/s11083-006-9045-x MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer (1999)Google Scholar
  11. 11.
    Ganter, B., Wille, R.: Contextual attribute logic. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, 7th International Conference on Conceptual Structures, ICCS’99, Blacksburg, Virginia, USA, July 12–15, 1999, Proceedings. LNAI, vol. 1640, pp. 337–338. Springer (1999)Google Scholar
  12. 12.
    Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 95, 5–18 (1986)MathSciNetGoogle Scholar
  13. 13.
    Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of semiconcepts and double Boolean algebras. In: Contributions to General Algebra, vol. 13. Proceedings of the Dresden Conference 2000 and the Summer School 1999. Verlag Johannes Heyn, Klagenfurt (2001)Google Scholar
  14. 14.
    Horn, L.R.: A Natural History of Negation. The University of Chicago Press, Chicago, London (1989)Google Scholar
  15. 15.
    Kwuida, L.: Dicomplemented Lattices. A Contextual Generalization of Boolean Algebras. Dissertation, TU Dresden. Shaker Verlag (2004)Google Scholar
  16. 16.
    Kwuida, L.: Axiomatization of Boolean algebras via weak dicomplementations. ArXiv:0911.0200 (2009)
  17. 17.
    Kwuida, L., Machida, H.: On the isomorphism problem of weakly dicomplemented lattices. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proceedings of the Sixth International Conference on Concept Lattices and Their Applications CLA2008, pp. 217-228. Palacký University, Olomouc, Czech Republic (2008). ISBN: 978-80-244-2111-7Google Scholar
  18. 18.
    Missaoui, R., Nourine, L., Renaud, Y.: Generating positive and negative exact rules using formal concept analysis: problems and solutions. In: Medina, R., Obiedkov, S.A. (eds.) Formal Concept Analysis, 6th International Conference, ICFCA 2008, Montreal, Canada, February 25–28, 2008, Proceedings. LNAI, vol. 4933, pp. 169–181. Springer (2008)Google Scholar
  19. 19.
    Priss, U.: Formal concept analysis in information science. In: Cronin, B. (ed.) Annual Review of Information Science and Technology, vol. 40, pp. 521–543 (2006)Google Scholar
  20. 20.
    Stone, M.H.: The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40, 37–111 (1936)MATHGoogle Scholar
  21. 21.
    Vormbrock, B., Wille, R.: Semiconcept and protoconcept algebras: the basic theorems. In: Ganter, B., et al. (eds.) Formal Concept Analysis, Foundations and Applications. LNAI, vol. 3626, pp. 34–48. Springer (2005)Google Scholar
  22. 22.
    Wansing, H. (ed.): Negation: A Notion in Focus. Perspectives in Analytical Philosophy, vol. 7. de Gruyter (1996)Google Scholar
  23. 23.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445-470. Reidel (1982)Google Scholar
  24. 24.
    Wille, R.: Restructuring mathematical logic: an approach based on Peirce’s pragmatism. In: Ursini, A., et al. (eds.) Logic and Algebra. Lecture Notes in Pure and Applied Mathematics, vol. 180, pp. 267–281. Marcel Dekker (1996)Google Scholar
  25. 25.
    Wille, R.: Boolean concept logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000 Conceptual Structures: Logical, Linguistic, and Computational Issues, 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14–18, 2000, Proceedings. LNAI, vol. 1867, pp. 317–331. Springer (2000)Google Scholar
  26. 26.
    Wille, R.: Preconcept algebras and generalized double Boolean algebras. In: Eklund, P. (ed.) Concept Lattices, Second International Conference on Formal Concept Analysis, ICFCA 2004, Sydney, Australia, February 23–26, 2004, Proceedings. LNAI, vol. 2961, pp. 1–13. Springer (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Engineering, Center of Applied Mathematics and PhysicsZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Department of MathematicsHitotsubashi UniversityTokyoJapan

Personalised recommendations