A description logic based situation calculus

Article
  • 167 Downloads

Abstract

We consider a modified version of the situation calculus built using a two-variable fragment of the first-order logic extended with counting quantifiers. We mention several additional groups of axioms that can be introduced to capture taxonomic reasoning. We show that the regression operator in this framework can be defined similarly to regression in Reiter’s version of the situation calculus. Using this new regression operator, we show that the projection and executability problems (the important reasoning tasks in the situation calculus) are decidable in the modified version even if an initial knowledge base is incomplete. We also discuss the complexity of solving the projection problem via regression in this modified language in general. Furthermore, we define description logic based sub-languages of our modified situation calculus. They are based on the description logics \(\mathcal{ALCO}(U)\) (or \(\mathcal{ALCQO}(U)\), respectively). We show that in these sub-languages solving the projection problem via regression has better computational complexity than in the general modified situation calculus. We mention possible applications to formalization of Semantic Web services and some connections with reasoning about actions based on description logics.

Keywords

Reasoning about action and change Semantic web and web services Situation calculus Description logics  Two-variable logic with counting quantifiers 

Mathematics Subject Classification (2000)

68T30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30(1–4), 171–210 (2001)MathSciNetGoogle Scholar
  2. 2.
    Baader, F., Lutz, C., Miliĉić, M., Sattler, U., Wolter, F.: A description logic based approach to reasoning about web services. In: Proceedings of the WWW 2005 Workshop on Web Service Semantics (WSS2005). Chiba City, Japan (2005)Google Scholar
  3. 3.
    Baader, F., Lutz, C., Miliĉić, M., Sattler, U., Wolter, F.: Integrating description logics and action formalisms: first results. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05), pp. 572–577. Pittsburgh, PA, USA (2005)Google Scholar
  4. 4.
    Baader, F., Miličić, M., Lutz, C., Sattler, U., Wolter, F.: Integrating description logics and action formalisms for reasoning about web services. Technical Report LTCS-05-02, Chair for Automata Theory, Institute for Theoretical Computer Science, Dresden University of Technology, Germany (2005). Available at http://lat.inf.tu-dresden.de/research/reports.html
  5. 5.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd Edn. Cambridge University Press, Cambridge (2007)Google Scholar
  6. 6.
    Bacchus, F., Halpern, J., Levesque, H.: Reasoning about noisy sensors and effectors in the situation calculus. Artif. Intell. 111, 171–208 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    van Benthem, J.: Modal correspondence theory. Ph.D. thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam (see also van Benthem, J.: Correspondence theory. In: Gabbay, D.M. Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 3, pp. 325–408. Kluwer Academic, Norwell, 1976)Google Scholar
  8. 8.
    van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Naples (1985)Google Scholar
  9. 9.
    Berardi, D., Calvanese, D., de Giacomo, G., Lenzerini, M., Mecella, M.: e-service composition by description logics based reasoning. In: Calvanese, D., de Giacomo, G., Franconi, E. (eds.) Proceedings of the 2003 International Workshop in Description Logics (DL-2003). Rome, Italy (2003)Google Scholar
  10. 10.
    Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–84. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  11. 11.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic, Springer, ISBN 3-540-42324-9, 2nd printing, 2001 (1997)Google Scholar
  12. 12.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artif. Intell. 82(1–2), 353–367 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level robot programming in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI’00), pp. 355–362. Austin, Texas (2000)Google Scholar
  14. 14.
    Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik, B., Turhan, A.Y., Tessaris, S. (eds.): In: Proceedings of the 2007 International Workshop on Description Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8–10 June 2007, CEUR Workshop Proceedings, vol. 250 (2007). http://ceur-ws.org/Vol-250/
  15. 15.
    Calvanese, D., de Giacomo, G., Lenzerini, M., Rosati, R.: Actions and programs over description logic ontologies. In: [14] (2007)Google Scholar
  16. 16.
    Castilho, M.A., Herzig, A., Varzinczak, I.J.: It depends on the context! a decidable logic of actions and plans based on a ternary dependence relation. In: Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-02), pp. 343–348, Toulouse, France, 19–21 April 2002Google Scholar
  17. 17.
    Chang, L., Lin, F., Shi, Z.: A dynamic description logic for representation and reasoning about actions. In: Zhang, Z., Siekmann, J.H. (eds.) Knowledge Science, Engineering and Management, Second International Conference, KSEM 2007. Lecture Notes in Computer Science, vol. 4798, pp. 115–127, Springer, Melbourne, Australia, 28–30 November 2007Google Scholar
  18. 18.
    Chang, L., Shi, Z., Qiu, L., Lin, F.: Dynamic description logic: embracing actions into description logic. In: [14] (2007)Google Scholar
  19. 19.
    Demolombe, R.: Belief change: from situation calculus to modal logic. J. Appl. Non-Class. Log. 13(2), 187–198 (2003)CrossRefGoogle Scholar
  20. 20.
    Demolombe, R., Herzig, A., Varzinczak, I.J.: Regression in modal logic. J. Appl. Non-Class. Log. 13(2), 165–185 (2003)CrossRefGoogle Scholar
  21. 21.
    Drescher, C., Thielscher, M.: Integrating action calculi and description logics. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI-2007. Lecture Notes in Computer Science, vol. 4667, pp. 68–83. Springer, Berlin (2007)Google Scholar
  22. 22.
    Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 418–423. Professional Book Center (2005)Google Scholar
  23. 23.
    Finzi, A., Pirri, F., Reiter, R.: Open world planning in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00), pp. 754–760. Austin, Texas, USA (2000)Google Scholar
  24. 24.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Gabbay, D.: Expressive functional completeness in tense logic. In: Mönnich, U. (ed.) Aspects of Philosophical Logic: Some Logical Forays into Central Notions of Linguistics and Philosophy, “Synthese Library”, vol. 147, pp. 91–117. Reidel (1981)Google Scholar
  26. 26.
    Gabbay, D.M., Shehtman, V.B.: Products of modal logics, part 1. Log. J. IGPL 6(1), 73–146 (1998)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Gabbay, D.M., Shehtman, V.B.: Products of modal logics. Part 2: relativised quantifiers in classical logic. Log. J. IGPL 8(2), 165–210 (2000)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Gabbay, D.M., Shehtman, V.B.: Products of modal logics. Part 3: products of modal and temporal logics. Stud. Log. 72(2), 157–183 (2002)CrossRefMathSciNetGoogle Scholar
  29. 29.
    de Giacomo, G., Lenzerini, M.: PDL-based framework for reasoning about actions. In: Gori, M., Soda, G. (eds.) Lecture Notes in Computer Science, vol. 992, pp. 103–114. AIIA, Springer, Berlin (1995)Google Scholar
  30. 30.
    de Giacomo, G., Iocchi, L., Nardi, D., Rosati, R.: A theory and implementation of cognitive mobile robots. J. Log. Comput. 9(5), 759–785 (1999)CrossRefGoogle Scholar
  31. 31.
    de Giacomo, G., Lenzerini, M., Poggi, A., Posati, R.: On the update of description logic ontologies at the instance level. In: Proceedings of the 21st National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI-06), pp. 1271–1276. AAAI Press, Boston, US (2006)Google Scholar
  32. 32.
    Gil, Y.: Description logics and planning. AI Mag. 26(2), 73–84 (2005)Google Scholar
  33. 33.
    Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bull. Symb. Log. 3(1), 53–69 (1997)CrossRefGoogle Scholar
  34. 34.
    Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), pp. 306–317. Warsaw, Poland (1997)Google Scholar
  35. 35.
    Grüninger, M.: Ontology of the process specification language. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 575–592. Springer, Berlin (2004)Google Scholar
  36. 36.
    Grüninger, M., Menzel, C.: The process specification language (PSL): theory and applications. AI Mag. 24(3), 63–74 (2003)Google Scholar
  37. 37.
    Gu, Y., Soutchanski, M.: Decidable reasoning in a modified situation calculus. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pp. 1891–1897. Hyderabad, India (2007). http://www.cs.ryerson.ca/~mes/publications/DecidableSitcalc_ijcai07.pdf
  38. 38.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT, Cambridge (2000)Google Scholar
  39. 39.
    Hemaspaandra, E.: The price of universality. Notre Dame J. Form. Log. 37(2), 174–203 (1996)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Henkin, L.: Logical systems containing only a finite number of symbols. Tech. rep., Départment de Mathématiques, Université de Montréal, Les Presses de l’Université de Montréal (1967)Google Scholar
  41. 41.
    Herzig, A., Varzinczak, I.J.: Metatheory of actions: beyond consistency. Artif. Intell. 171(16–17), 951–984 (2007)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Herzig, A., Perrussel, L., Varzinczak, I.J.: Elaborating domain descriptions. In: Brewka, G. (ed.) 17th European Conference on Artificial Intelligence (ECAI-06). Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 397–401, IOS Press, Riva del Garda, Italy, 29 August–1 September 2006Google Scholar
  43. 43.
    Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 199–204. Morgan Kaufmann, San Francisco (2001)Google Scholar
  44. 44.
    Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)Google Scholar
  45. 45.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR-06), pp. 57–67. AAAI, Menlo Park (2006)Google Scholar
  46. 46.
    Hustadt, U., de Nivelle, H., Schmidt, R.A.: Resolution-based methods for modal logics. Log. J. IGPL 8(3), 265–292 (2000)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order fragments and description logics. J. Relat. Methods Comput. Sci. 1, 251–276 (2004)Google Scholar
  48. 48.
    Kakas, A.C., Michael, L., Miller, R.: Modular-\(\mathcal{E}\): an elaboration tolerant approach to the ramification and qualification problems. In: Baral, C., Greco, G., Leone, N., Terracina G. (eds.) Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-05), Springer. Lecture Notes in Computer Science, vol. 3662, pp. 211–226, Diamante, Italy, 5–8 September 2005Google Scholar
  49. 49.
    Kemke, C.: A formal theory for describing action concepts in terminological knowledge bases. In: Xiang Y., Chaib-draa, B. (eds.) Advances in Artificial Intelligence: 16th Conference of the Canadian Society for Computational Studies of Intelligence. Lecture Notes in Computer Science, vol. 2671, pp. 458–465, 11–13 June 2003, Springer, Halifax (2003)Google Scholar
  50. 50.
    Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 869–924. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  51. 51.
    Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31, 59–84 (1997)CrossRefGoogle Scholar
  52. 52.
    Lin, F.: Discovering state invariants. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.), pp. 536–544. KR, AAAI, Menlo Park (2004)Google Scholar
  53. 53.
    Lin, F.: Situation calculus. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 649–669. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  54. 54.
    Lin, F., Reiter, R.: State constraints revisited. J. Log. Comput. 4(5), 655–678 (1994)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Lin, F., Reiter, R.: How to progress a database. Artif. Intell. 92, 131–167 (1997)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Liu, H., Lutz, C., Miličić, M., Wolter, F.: Reasoning about actions using description logics with general TBoxes. In: Fisher, M., van der, Hoek, W., Konev, B., Lisitsa, A. (eds.) Logics in Artificial Intelligence, 10th European Conference. Lecture Notes in Computer Science, vol. 4160, pp. 266–279. JELIA, Springer, Berlin (2006)CrossRefGoogle Scholar
  57. 57.
    Liu, H., Lutz, C., Miličić, M., Wolter, F.: Updating description logic ABoxes. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR-06), pp 46–56. AAAI, Menlo Park (2006)Google Scholar
  58. 58.
    Liu, Y., Lakemeyer, G.: On first-order definability and computability of progression for local-effect actions and beyond. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), pp. 860–866. Pasadena, USA (2009)Google Scholar
  59. 59.
    Liu, Y., Levesque, H.J.: Tractable reasoning with incomplete first-order knowledge in dynamic systems with context-dependent actions. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 522–527. Edinburgh, Scotland (2005)Google Scholar
  60. 60.
    Lutz, C., Sattler, U.: The complexity of reasoning with Boolean modal logics. In: Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 3, pp. 329–348. World Scientific, Singapore (2000)Google Scholar
  61. 61.
    Lutz, C, Sattler, U., Wolter, F.: Description logics and the two-variable fragment. In: McGuiness, D., Pater-Schneider, P., Goble, C., Möller, R. (eds.) Proceedings of the 2001 International Workshop in Description Logics (DL-2001), pp. 66–75. Stanford, California, USA (2001)Google Scholar
  62. 62.
    McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pp. 1978–1984, 20–25 August 1995, Montréal, Québec, Canada (1995)Google Scholar
  63. 63.
    McCarthy, J.: Programs with common sense. In: Mechanisation of Thought Processes, Proceedings of the Symposium of the National Physics Laboratory, Her Majesty’s Stationery Office. Reprinted in [66], pp. 77–84. London, U.K. (1959)Google Scholar
  64. 64.
    McCarthy, J.: Situations, actions and causal laws. Memo 2, Stanford University, Department of Computer Science, reprinted in: “Semantic Information Processing” (M. Minsky, ed.), pp. 410–417. MIT, Cambridge (1963)Google Scholar
  65. 65.
    McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artif. Intell. 28, 89–116 (1986)CrossRefMathSciNetGoogle Scholar
  66. 66.
    McCarthy, J.: Formalization of common sense. Ablex, Norwood (papers by John McCarthy edited by V. Lifschitz, 1990)Google Scholar
  67. 67.
    McCarthy, J.: Actions and other events in situation calculus. In: Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR2002), pp. 615–628. Morgan Kaufmann Publishers, Toulouse (2002). Available at http://www-formal.stanford.edu/jmc/sitcalc.html Google Scholar
  68. 68.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502. Edinburgh University Press, Edinburgh, Reprinted in [66] (1969)Google Scholar
  69. 69.
    McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.A. (eds.) Proceedings of the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), pp. 482–493, Morgan Kaufmann, Toulouse, 22–25 April 2002Google Scholar
  70. 70.
    McIlraith, S.A.: Integrating actions and state constraints: a closed-form solution to the ramification problem (sometimes). Artif. Intell. 116(1–2), 87–121 (2000)CrossRefMathSciNetGoogle Scholar
  71. 71.
    Miličić, M.: Complexity of planning in action formalisms based on description logics. In: Dershowitz, N., Voronkov, A. (eds.) Proceedings of the 14th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2007). Lecture Notes in Computer Science, vol. 4790, pp. 408–422. Springer, Berlin (2007)Google Scholar
  72. 72.
    Morgenstern, L., Riecken, D.: SNAP: An action-based ontology for e-commerce reasoning. In: Formal Ontologies Meet Industry, Proceedings of the 1st International Workshop FOMI 2005. Verona, Italy (2005)Google Scholar
  73. 73.
    Narayanan, S., McIlraith S.: Analysis and simulation of web services. Comput. Networks 42, 675–693 (2003)CrossRefGoogle Scholar
  74. 74.
    de Nivelle, H., Pratt-Hartmann, I.: A resolution-based decision procedure for the two-variable fragment with equality. In: R Goré, A.L., Nipkow, T. (eds.) IJCAR’01: Proceedings of the First International Joint Conference on Automated Reasoning. Lecture Notes in Artificial Intelligence, vol. 2083, pp. 211–225. Springer, London (2001)Google Scholar
  75. 75.
    Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.M.: Encoding two-valued nonclassical logics in classical logic. In: Handbook of automated reasoning, pp. 1403–1486. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  76. 76.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS-97), pp. 318–327. A journal version: SIAM J. Comput. 29(4), 1083–1117 (1999). Warsaw, Poland (1997)Google Scholar
  77. 77.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity results for first-order two-variable logic with counting. SIAM J. Comput. 29(4), 1083–1117 (2000)CrossRefMathSciNetGoogle Scholar
  78. 78.
    Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. J. ACM 46(3), 325–364 (1999)CrossRefMathSciNetGoogle Scholar
  79. 79.
    Pratt, V.R.: A practical decision method for propositional dynamic logic: preliminary report. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 326–337. ACM, San Diego (1978)Google Scholar
  80. 80.
    Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. J. Logic, Lang. Inf. 14(3), 369–395 (2005). doi: 10.1007/s10849-005-5791-1 CrossRefMathSciNetGoogle Scholar
  81. 81.
    Prendinger, H., Schurz, G.: Reasoning about action and change: a dynamic logic approach. J. Logic, Lang. Inf. 5(2), 209–245 (1996)CrossRefMathSciNetGoogle Scholar
  82. 82.
    Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems. MIT, Cambridge (2001)Google Scholar
  83. 83.
    Sandewall, E.: Features and Fluents: The Representation of Knowledge about Dynamical Systems. Oxford University Press, Oxford (1994)Google Scholar
  84. 84.
    Schaerf, A.: Reasoning with individuals in concept languages. Data Knowl. Eng. 13(2), 141–176 (1994)CrossRefGoogle Scholar
  85. 85.
    Schiffel, S., Thielscher M.: Reconciling situation calculus and fluent calculus. In: 21st National Conference on Artificial Intelligence (AAAI-2006), pp. 287–292. AAAI, Boston (2006)Google Scholar
  86. 86.
    Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), pp. 466–471. Morgan Kaufmann, Sydney (1991)Google Scholar
  87. 87.
    Schmidt, R.A., Tishkovsky, D.: Deciding ALBO with tableau. In: [14] (2007)Google Scholar
  88. 88.
    Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description logics, modal logics and related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint Conference (IJCAR-08). Lecture Notes in Computer Science, vol. 5195, pp. 194–209. Springer, Sydney, 12–15 August 2008Google Scholar
  89. 89.
    Schmidt-Schaubß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)CrossRefGoogle Scholar
  90. 90.
    Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia. MIT, Cambridge (1997)Google Scholar
  91. 91.
    Spaan, E.: Complexity of modal logics. Ph.D. thesis, Department of Mathematics and Computer Science, University of Amsterdam (1993)Google Scholar
  92. 92.
    Thielscher, M.: Challenges for Action Theories. Lecture Notes in Computer Science, vol. 1775. Springer, Berlin (2000)Google Scholar
  93. 93.
    Tobies, S.: A NExpTime-complete description logic strictly contained in C2. In: Flum, J, Rodríguez-Artalejo M (eds.) Computer Science Logic, 13th International Workshop (CSL-99). Lecture Notes in Computer Science, vol. 1683, pp. 292–306. Springer, Berlin (1999)Google Scholar
  94. 94.
    Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. J. Artif. Intell. Res. 12, 2000 (2000)MathSciNetGoogle Scholar
  95. 95.
    Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)Google Scholar
  96. 96.
    Varzinczak, I.J.: Action theory contraction and minimal change. In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference (KR-2008), pp. 651–661. AAAI, Menlo Park (2008)Google Scholar
  97. 97.
    Vassos, S., Lakemeyer, G., Levesque, H.J.: First-order strong progression for local-effect basic action theories. In: Proceedings of 11th International Conference on Principles of Knowledge Representation and Reasoning (KR-08), pp. 662–672, Sydney, Australia, 16–19 September 2008Google Scholar
  98. 98.
    Winslett, M.S.: Updating Logical Databases. Academic, San Diego (1990)CrossRefGoogle Scholar
  99. 99.
    Wolter, F., Zakharyaschev, M.: Dynamic description logics. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 2, pp. 431–446. CSLI, Stanford (1998)Google Scholar
  100. 100.
    Zolin, E.: Description logic complexity navigator (2007). Available at http://www.cs.man.ac.uk/~ezolin/dl/

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Computer ScienceRyerson UniversityTorontoCanada

Personalised recommendations