Advertisement

Flyspeck II: the basic linear programs

  • Steven Obua
  • Tobias Nipkow
Article

Abstract

We present another step, Flyspeck II, towards a complete, formal and mechanized proof of the Kepler Conjecture.

Keywords

Flyspeck Kepler conjecture Interactive theorem proving Isabelle Higher-order logic Computational logic Finite matrices Lattice-ordered rings Linear programming Hypermaps Planar graphs 

Mathematics Subject Classifications (2000)

03B35 68T15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalization by evaluation. In: Mohamed, A., Munoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 39–54. Springer, New York (2008)Google Scholar
  2. 2.
    Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES. Lecture Notes in Computer Science, vol. 3085, pp. 34–50. Springer, New York (2003)Google Scholar
  3. 3.
    Barras, B.: Programming and computing in HOL. In: Aagaard, M., Harrison, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 1869, pp. 17–37. Springer, New York (2000)Google Scholar
  4. 4.
    Berghofer, S.: Proofs, programs and executable specifications in higher order logic. Ph.D. thesis, Technische Universität München (2003)Google Scholar
  5. 5.
    Birkhoff, G.: Lattice Theory. AMS, Providence (1967)zbMATHGoogle Scholar
  6. 6.
    Boyer, R.S., Moore, J.S.: A Computational Logic. Academic, New York (1979)zbMATHGoogle Scholar
  7. 7.
    The COQ development team: The COQ reference manual, version 8.2. http://coq.inria.fr (2009)
  8. 8.
    Gonthier, G.: A computer-checked proof of the four color theorem. http://research.microsoft.com/~gonthier/4colproof.pdf
  9. 9.
    Gonthier, G.: Formal proof—the four color theorem. Not. Am. Math. Soc. 55 (2008)Google Scholar
  10. 10.
    Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 169–185. MIT, Cambridge (2000)Google Scholar
  11. 11.
    Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Trans. Math. Softw. 4(3), 250–269 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Haftmann, F.: Code generation from specifications in higher-order logic. Ph.D. thesis, Technische Universität München (2009)Google Scholar
  13. 13.
    Hales, T.C.: Sphere packings III. arXiv:math/9811075v2
  14. 14.
    Hales, T.C., Ferguson, S.P.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hales, T.C., Ferguson, S.P.: The Kepler conjecture. Discrete Comput. Geom. 36, (2006)Google Scholar
  16. 16.
    Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler Conjecture. Discrete Comput. Geom. (2009)Google Scholar
  17. 17.
    Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. Lecture Notes in Computer Science, vol. 3603. Springer, Oxford (2005)Google Scholar
  18. 18.
    Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: Proceedings of the ACM SIGSAM 2009 International Workshop on Programming Languages for Mechanized Mathematics Systems (PLMMS 2009) (2009)Google Scholar
  19. 19.
    Hurd, J., Melham, T.F. (eds.): Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, 22–25 August 2005, Proceedings. Lecture Notes in Computer Science, vol. 3603. Springer, New York (2005)Google Scholar
  20. 20.
    Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U., Shankar, N. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 4130, pp. 589–603. Springer, New York (2006)Google Scholar
  21. 21.
    Lang, S.: Algebra. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  22. 22.
    Nipkow, T., Bauer, G., Schultz, P.: The archive of tame graphs. http://www4.informatik.tu-muenchen.de/~nipkow/pubs/Flyspeck (2006)
  23. 23.
    Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: IJCAR, pp. 21–35 (2006)Google Scholar
  24. 24.
    Nipkow, T., Paulson, L.C.: Proof pearl: defining functions over finite sets. In: Hurd, J., Melham, T.F. (eds.) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, 22–25 August 2005, Proceedings. Lecture Notes in Computer Science, vol. 3603, pp. 385–396. Springer, New York (2005)Google Scholar
  25. 25.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—a proof assistant for higher-order logic. In: Lecture Notes in Computer Science, vol. 2283. Springer, New York (2002)Google Scholar
  26. 26.
    Obua, S.: Flyspeck II: the basic linear programs. http://www4.in.tum.de/~obua/flyspeckII (2007)
  27. 27.
    Obua, S.: Proving bounds for real linear programs in Isabelle/Hol. In: Hurd, J., Melham, T.F. (eds.) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, 22–25 August 2005, Proceedings. Lecture Notes in Computer Science, vol. 3603, pp. 227–244. Springer, New York (2005)Google Scholar
  28. 28.
    Obua, S.: Proof pearl: looping around the orbit. In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 223–231. Springer, New York (2007)Google Scholar
  29. 29.
    Obua, S.: Flyspeck II: the basic linear programs. Ph.D. thesis, Technische Universität München (2008)Google Scholar
  30. 30.
    Puitg, F., Dufourd, J.-F.: Formal specification and theorem proving breakthroughs in geometric modeling. In: Grundy, J., Newey, M.C. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 1479, pp. 401–422. Springer, New York (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Universität des SaarlandsSaarbrückenGermany
  2. 2.TU MünchenGarchingGermany

Personalised recommendations