Disjunctive databases for representing repairs

  • Cristian Molinaro
  • Jan Chomicki
  • Jerzy Marcinkowski
Article

Abstract

This paper addresses the problem of representing the set of repairs of a possibly inconsistent database by means of a disjunctive database. Specifically, the class of denial constraints is considered. We show that, given a database and a set of denial constraints, there exists a (unique) disjunctive database, called canonical, which represents the repairs of the database w.r.t. the constraints and is contained in any other disjunctive database with the same set of minimal models. We propose an algorithm for computing the canonical disjunctive database. Finally, we study the size of the canonical disjunctive database in the presence of functional dependencies for both subset-based repairs and cardinality-based repairs.

Keywords

Inconsistent databases Incomplete databases Repairs Disjunctive databases 

Mathematics Subject Classifications (2000)

68P15 68T37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and complexity. In: International Conference on Database Theory (ICDT), pp. 31–41 (2009)Google Scholar
  2. 2.
    Antova, L., Koch, C., Olteanu, D.: 10\(^{{10}^{6}}\) worlds and beyond: efficient representation and processing of incomplete information. In: International Conference on Data Engineering (ICDE), pp. 606–615 (2007)Google Scholar
  3. 3.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)Google Scholar
  4. 4.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. Theory Pract. Log. Program 3(4–5), 393–424 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Ann. Math. Artif. Intell. 50(3–4), 389–415 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases with uncertainty and lineage. VLDB J. 17(2), 243–264 (2008)CrossRefGoogle Scholar
  7. 7.
    Bertossi, L.E.: Consistent query answering in databases. SIGMOD Rec. 35(2), 68–76 (2006)CrossRefGoogle Scholar
  8. 8.
    Bertossi, L.E., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approximation of fixing numerical attributes in databases under integrity constraints. Inf. Syst. 33(4–5), 407–434 (2008)CrossRefGoogle Scholar
  9. 9.
    Bertossi, L.E., Chomicki, J.: Query answering in inconsistent databases. In: Logics for Emerging Applications of Databases, pp. 43–83 (2003)Google Scholar
  10. 10.
    Calì, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data integration systems. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 16–21 (2003)Google Scholar
  11. 11.
    Chomicki, J.: Consistent query answering: five easy pieces. In: International Conference on Database Theory (ICDT), pp. 1–17 (2007)Google Scholar
  12. 12.
    Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions. Inf. Comput. 197(1–2), 90–121 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fernández, J.A., Minker, J.: Semantics of disjunctive deductive databases. In: International Conference on Database Theory (ICDT), pp. 21–50 (1992)Google Scholar
  14. 14.
    Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)CrossRefGoogle Scholar
  15. 15.
    Imielinski, T., Naqvi, S.A., Vadaparty, K.V.: Incomplete objects—a data model for design and planning applications. In: ACM SIGMOD Conference, pp. 288–297 (1991)Google Scholar
  16. 16.
    Imielinski, T., van der Meyden, R., Vadaparty, K.V.: Complexity tailored design: a new design methodology for databases with incomplete information. J. Comput. Syst. Sci. 51(3), 405–432 (1995)CrossRefGoogle Scholar
  17. 17.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lopatenko, A., Bertossi, L.E.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: International Conference on Database Theory (ICDT), pp. 179–193 (2007)Google Scholar
  19. 19.
    Minker, J.: On indefinite databases and the closed world assumption. In: International Conference on Automated Deduction (CADE), pp. 292–308 (1982)Google Scholar
  20. 20.
    Minker, J., Seipel, D.: Disjunctive logic programming: a survey and assessment. In: Computational Logic: Logic Programming and Beyond, pp. 472–511 (2002)Google Scholar
  21. 21.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: ACM Symposium on Theory of Computing (STOC), pp. 137–146 (1982)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cristian Molinaro
    • 1
  • Jan Chomicki
    • 2
  • Jerzy Marcinkowski
    • 3
  1. 1.DEISUniversitá della CalabriaRende (CS)Italy
  2. 2.Department of Computer Science and Engineering, 201 Bell HallThe State University of New York at BuffaloBuffaloUSA
  3. 3.Institute of InformaticsWroclaw UniversityWroclawPoland

Personalised recommendations