A new methodology for developing deduction methods

Article

Abstract

This paper explores the use of resolution as a meta-framework for developing various, different deduction calculi. In this work the focus is on developing deduction calculi for modal dynamic logics. Dynamic modal logics are PDL-like extended modal logics which are closely related to description logics. We show how tableau systems, modal resolution systems and Rasiowa-Sikorski systems can be developed and studied by using standard principles and methods of first-order theorem proving. The approach is based on the translation of reasoning problems in modal logic to first-order clausal form and using a suitable refinement of resolution to construct and mimic derivations of the desired proof method. The inference rules of the calculus can then be read off from the clausal form. We show how this approach can be used to generate new proof calculi and prove soundness, completeness and decidability results. This slightly unusual approach allows us to gain new insights and results for familiar and less familiar logics, for different proof methods, and compare them not only theoretically but also empirically in a uniform framework.

Keywords

Deduction calculus synthesis Resolution Tableaux Dual resolution Dual tableaux Modal resolution Decidability Modal logic 

Mathematics Subject Classifications (2000)

03B25 03B35 03B45 03B70 03F03 68T15 68T27 

References

  1. 1.
    Areces, C., de Rijke, M., de Nivelle, H.: Resolution in modal, description and hybrid logic. J. Log. Comput. 11(5), 717–736 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Log. 69, 5–40 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 2, pp. 19–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Proceedings of the Third Kurt Gödel Colloquium (KGC’93). Lecture Notes in Computer Science, vol. 713, pp. 83–96. Springer, New York (1993)Google Scholar
  5. 5.
    Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model generation methods. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning: Third International Joint Conference on Automated Reasoning (IJCAR 2006). Lecture Notes in Artificial Intelligence, vol. 4130, pp. 125–139. Springer, New York (2006)Google Scholar
  6. 6.
    Brink, C., Britz, K., Schmidt, R.A.: Peirce algebras. Form. Asp. Comput. 6(3), 339–358 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Castilho, M.A., Fariñas del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux with propagation rules and structural rules. Fundam. Inform. 3–4(32), 281–297 (1997)Google Scholar
  8. 8.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    De Nivelle, H.: Splitting through new proposition symbols. In: Nieuwenhuis, R., Voronkov, A. (eds.) Proceedings of the Eighth International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001). Lecture Notes in Artificial Intelligence, vol. 2250, pp. 172–185. Springer, New York (2001)CrossRefGoogle Scholar
  10. 10.
    De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Log. J. IGPL 8(3), 265–292 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eder, E.: Relative Complexities of First Order Calculi. Artificial Intelligence. Vieweg, Wiesbaden (1992)Google Scholar
  12. 12.
    Fariñas del Cerro, L., Gasquet, O.: A general framework for pattern-driven modal tableaux. Log. J. IGPL 10(1), 51–83 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fariñas del Cerro, L., Herzig, A.: Modal deduction with applications in epistemic and temporal logics. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming: Epistemic and Temporal Reasoning, vol. 4, pp. 499–594. Clarendon, Oxford (1995)Google Scholar
  14. 14.
    Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 25, pp. 1791–1849. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  15. 15.
    Fitting, M.: Destructive modal resolution. J. Log. Comput. 1(1), 83–97 (1990)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications. Studies in Logic: Mathematical Logic and Foundations, vol. 12. College Publications, London (2008)MATHGoogle Scholar
  17. 17.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: Computational space efficiency and minimal model generation for guarded formulae. In: Nieuwenhuis, R., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001). Lecture Notes in Artificial Intelligence, vol. 2250, pp. 85–99. Springer, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: A new clausal class decidable by hyperresolution. In: Voronkov, A. (ed.) Automated Deduction—CADE-18. Lecture Notes in Artificial Intelligence, vol. 2392, pp. 260–274. Springer, New York (2002)CrossRefGoogle Scholar
  19. 19.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. J. Symb. Comput. 36(1–2), 163–192 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Deventer (1999)Google Scholar
  21. 21.
    Goré, R., Nguyen, L.A.: Exptime tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2007). Lecture Notes in Computer Science, vol. 4548, pp. 133–148. Springer, New York (2007)CrossRefGoogle Scholar
  22. 22.
    Gray, C.T.: An automated reasoner for propositional logic. Third year project report, University of Manchester, UK (2007)Google Scholar
  23. 23.
    Horrocks, I.: Optimising tableaux decision procedures for description logics. PhD thesis, University of Manchester, Manchester, UK (1997)Google Scholar
  24. 24.
    Hustadt, U., Schmidt, R.A.: An empirical analysis of modal theorem provers. J. Appl. Non-Class. Log. 9(4), 479–522 (1999)MATHMathSciNetGoogle Scholar
  25. 25.
    Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof systems for description logics. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI’99), vol. 1, pp. 110–115. Morgan Kaufmann, San Francisco (1999)Google Scholar
  26. 26.
    Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the framework of resolution. In: Caferra, R., Salzer, G. (eds.) Automated Deduction in Classical and Non-Classical Logics. Lecture Notes in Artificial Intelligence, vol. 1761, pp. 191–205. Springer, New York (2000)CrossRefGoogle Scholar
  27. 27.
    Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, International Conference (TABLEAUX 2000). Lecture Notes in Artificial Intelligence, vol. 1847, pp. 67–71. Springer, New York (2000)CrossRefGoogle Scholar
  28. 28.
    Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. In: Gent, I.P., van Maaren, H., Walsh, T. (eds.) SAT 2000: Highlights of Satisfiability Research in the Year 2000. Frontiers in Artificial Intelligence and Applications, vol. 63, pp. 459–483. IOS, Amsterdam (2000) (Also published as Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. J. Autom. Reason. 28(2), 205–232 (2002))Google Scholar
  29. 29.
    Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order fragments and description logics. J. Relat. Methods Comput. Sci. 1, 251–276 (2004)Google Scholar
  30. 30.
    Konikowska, B.: Rasiowa-Sikorski deduction systems in computer science applications. Theor. Comp. Sci. 286(2), 323–366 (2002)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kourouyiannis, C.: A tableau calculus generator for modal logic. Master’s thesis, University of Manchester, UK (2007)Google Scholar
  32. 32.
    Massacci, F.: Single step tableaux for modal logics: computational properties, complexity and methodology. J. Autom. Reason. 24(3), 319–364 (2000)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Massacci, F.: Decision procedures for expressive description logics with intersection, composition, converse of roles and role identity. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 193–198. Morgan Kaufmann, San Francisco (2001)Google Scholar
  34. 34.
    Mostafavi-Taraghi, S.M.: Resolution-based tableaux for modal and description logics. Master’s thesis, University of Manchester, UK (2007)Google Scholar
  35. 35.
    Nellas, K.: Reasoning about sets and relations: a tableaux-based automated theorem prover for Peirce logic. Master’s thesis, University of Manchester, UK (2001)Google Scholar
  36. 36.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  37. 37.
    Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.: Encoding two-valued nonclassical logics in classical logic. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 21, pp. 1403–1486. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  38. 38.
    Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne, vol. 41. Polish Scientific, Warsaw (1963)MATHGoogle Scholar
  39. 39.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 611–617. Morgan Kaufmann, Amsterdam (2001)Google Scholar
  40. 40.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2–3), 91–110 (2002)MATHGoogle Scholar
  41. 41.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)MATHCrossRefGoogle Scholar
  42. 42.
    Schmidt, R.A.: Developing modal tableaux and resolution methods via first-order resolution. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 1–26. College Publications, London (2006)Google Scholar
  43. 43.
    Schmidt, R.A., Hustadt, U.: A resolution decision procedure for fluted logic. In: McAllester, D. (ed.) Automated Deduction—CADE-17. Lecture Notes in Artificial Intelligence, vol. 1831, pp. 433–448. Springer, New York (2000)CrossRefGoogle Scholar
  44. 44.
    Schmidt, R.A., Hustadt, U.: Mechanised reasoning and model generation for extended modal logics. In: de Swart, H.C.M., Orlowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. Lecture Notes in Computer Science, vol. 2929, pp. 38–67. Springer, New York (2003)Google Scholar
  45. 45.
    Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the first-order translation of modal formulae. In: Baader, F. (ed.) Automated Deduction—CADE-19. Lecture Notes in Artificial Intelligence, vol. 2741, pp. 412–426. Springer, New York (2003) (The extended, long version is Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Trans. Comput. Log. 8(4), 1–55 (2007)).Google Scholar
  46. 46.
    Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In: Volume in Memoriam of Harald Ganzinger. Lecture Notes in Computer Science. Springer, New York (2006, to appear)Google Scholar
  47. 47.
    Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Trans. Comput. Log. 8(4), 1–55 (2007)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Schmidt, R.A., Orlowska, E., Hustadt, U.: Two proof systems for Peirce algebras. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relational and Kleene-Algebraic Methods in Computer Science (RelMiCS 7). Lecture Notes in Computer Science, vol. 3051, pp. 238–251. Springer, New York (2004)Google Scholar
  49. 49.
    Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics with role negation. In: Aberer, K., Choi, K.-S., Fridman Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11–15, 2007. Lecture Notes in Computer Science, vol. 4825, pp. 438–451. Springer, New York (2007)Google Scholar
  50. 50.
    Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description logics, modal logics and related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning (IJCAR 2008). Lecture Notes in Computer Science, vol. 5195, pp. 194–209. Springer, New York (2008)CrossRefGoogle Scholar
  51. 51.
    Schulz, S.: E: a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)MATHGoogle Scholar
  52. 52.
    Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System description: SPASS version 3.0. In: Pfenning, F. (ed.) Automated Deduction—CADE-21. Lecture Notes in Artificial Intelligence, vol. 4603, pp. 514–520. Springer, New York (2007)CrossRefGoogle Scholar
  53. 53.
    Weidenbach, C., Schmidt, R.A., Keen, E.: SPASS handbook version 3.0. Contained in the distribution of SPASS Version 3.0 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Computer ScienceThe University of ManchesterManchesterUK

Personalised recommendations