Labelled splitting

Open Access


We define a superposition calculus with explicit splitting on the basis of labelled clauses. For the first time we show a superposition calculus with an explicit non-chronological backtracking rule sound and complete. The new backtracking rule advances backtracking with branch condensing known from SPASS. An experimental evaluation of an implementation of the new rule shows that it improves considerably on the previous SPASS splitting implementation. Finally, we discuss the relationship between labelled first-order splitting and DPLL style splitting with intelligent backtracking and clause learning.


Superposition Splitting Labels 

Mathematics Subject Classification (2000)



  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Automated Reasoning, pp. 19–99 (2001)Google Scholar
  3. 3.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Computational Logic and Proof Theory, Third Kurt Gödel Colloquium. LNCS, vol. 713, pp. 83–96. Springer, New York (1993)Google Scholar
  4. 4.
    Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganó, L., (eds.) Labelled Deduction. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  5. 5.
    Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172(4–5), 591–632 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de Nivelle, H.: Splitting through new proposition symbols. In: Logic for Programming, Artificial Intelligence, and Reasoning, 8th International Conference, LPAR 2001. LNAI, vol. 2250, pp. 172–185. Springer, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: An extensible SAT solver. Theory and Applications of Satisfiability Testing, pp. 502–518 (2004)Google Scholar
  9. 9.
    Fermüller, C.G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, chapter 25, pp. 1791–1849. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  10. 10.
    Fietzke, A., Weidenbach, C.: Labelled splitting. In: 4th International Joint Conference on Automated Reasoning (IJCAR). LNAI, vol. 5195, pp. 459–474. Springer, New York (2008)Google Scholar
  11. 11.
    Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research report MPI-I-2007-RG1-002, Max-Planck Institute for Informatics, Saarbrücken (2007)Google Scholar
  12. 12.
    Lev-Ami, T., Weidenbach, C., Reps, T., Sagiv, M.: Labelled clauses. In: 21st International Conference on Automated Deduction (CADE-21). Lecture Notes in Computer Science, vol. 4603, pp. 311–327. Springer, New York (2007)Google Scholar
  13. 13.
    Nieuwenhuis, R., Oliveras, A.: Decision procedures for SAT, SAT Modulo Theories and Beyond. The Barcelogic Tools. (Invited Paper). In: Sutcliffe, G., Voronkov, A. (eds.) 12th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’05. Lecture Notes in Computer Science, vol. 3835, pp. 23–46. Springer, New York (2005)Google Scholar
  14. 14.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL. J. ACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chapter 7, pp. 371–443. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  16. 16.
    Nonnengart, A. Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, chapter 6, pp. 335–367. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  17. 17.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: IJCAI, pp. 611–617 (2001)Google Scholar
  18. 18.
    Sutcliffe, G., Suttner, C.: The TPTP problem library: CNF release v1.2.1. J Autom Reason 21(2), 177–203 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tseitin, G.: On the complexity of derivations in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers on Computational Logic, vol. 2, pp. 466–483. Springer (1983). First published in: Studies in Constructive Mathematics and Mathematical Logic, (Slisenko, A.O., ed.) (1968)Google Scholar
  20. 20.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.), Handbook of Automated Reasoning, vol. 2, chapter 27, pp. 1965–2012. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  21. 21.
    Weidenbach, C., Gaede, B., Rock, G.: Spass and flotter, version 0.42. In: McRobbie, M., Slaney, J. (eds.) 13th International Conference on Automated Deduction, CADE-13. LNAI, vol. 1104, pp. 141–145. Springer, New York (1996)Google Scholar
  22. 22.
    Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: System description: SPASS version 3.0. In: Pfenning, F. (ed.) CADE-21: 21st International Conference on Automated Deduction. LNAI, vol. 4603, pp. 514–520. Springer, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations