Increasing interpretations

Article

Abstract

The article at hand introduces a refinement of interpretation-based termination criteria for term rewrite systems in the dependency pair setting. Traditional methods share the property that—in order to be successful—all rewrite rules must (weakly) decrease with respect to some measure. One novelty of our approach is that we allow some rules to increase the interpreted value. These rules are found by simultaneously searching for adequate polynomial interpretations while considering the information of the dependency graph. We prove that our method extends the termination proving power of linear interpretations. Furthermore, this generalization perfectly fits the dependency pair framework which is implemented in virtually every termination prover dealing with term rewrite systems. We present two dependency pair processors for increasing interpretations. The novelty of the second one is that it can be used to eliminate single edges from the dependency graph.

Keywords

Term rewriting Termination Polynomial interpretations 

Mathematics Subject Classifications (2000)

68Q42 68T99 

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. 6th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 2919, pp. 502–518 (2003)Google Scholar
  4. 4.
    Endrullis, J.: Jambox. http://joerg.endrullis.de (2007)
  5. 5.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Proc. 10th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4501, pp. 340–354 (2007)Google Scholar
  7. 7.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proc. 19th International Conference on Rewriting Techniques and Applications. LNCS, vol. 5117, pp. 110–125 (2008)Google Scholar
  8. 8.
    Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-Kamp, P.: Search techniques for rational polynomial orders. In: Proc. 9th International Conference on Artificial Intelligence and Symbolic Computation. LNCS (LNAI), vol. 5144, pp. 109–124 (2008)Google Scholar
  9. 9.
    Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify termination of left-linear term rewriting systems. Inf. Comput. 205(4), 512–534 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Proc. 3rd International Joint Conference on Automated Reasoning. LNCS (LNAI), vol. 4130, pp. 281–286 (2006)Google Scholar
  11. 11.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proc. 11th International Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNCS (LNAI), vol. 3425, pp. 301–331 (2004)Google Scholar
  12. 12.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Proc. 5th International Workshop on Frontiers of Combining Systems. LNCS (LNAI), vol. 3717, pp. 216–231 (2005)Google Scholar
  13. 13.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Proc. 7th International Conference on Artificial Intelligence and Symbolic Computation. LNCS (LNAI), vol. 3249, pp. 185–198 (2004)Google Scholar
  15. 15.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Comput. 199(1–2), 172–199 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hong, H., Jakuš, D.: Testing positiveness of polynomials. J. Autom. Reason. 21(1), 23–38 (1998)CrossRefGoogle Scholar
  18. 18.
    Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Proc. 19th International Conference on Rewriting Techniques and Applications. LNCS, vol. 5117, pp. 202–216 (2008)Google Scholar
  19. 19.
    Korp, M., Middeldorp, A.: Proving termination of rewrite systems using bounds. In: Proc. 18th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4533, pp. 273–287 (2007)Google Scholar
  20. 20.
    Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order constraints with application to expert systems in software verification. In: Proc. 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. LNCS (LNAI), vol. 3029, pp. 827–837 (2004)Google Scholar
  21. 21.
    Lankford, D.: On proving term rewrite systems are noetherian. Tech. Rep. MTP-3, Louisiana Technical University, Ruston (1979)Google Scholar
  22. 22.
    Lucas, S.: Practical use of polynomials over the reals in proofs of termination. In: Proc. 9th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, pp. 39–50 (2007)Google Scholar
  23. 23.
    Middeldorp, A.: Approximations for strategies and termination. Electr. Notes Theor. Comput. Sci. 70(6), 1–20 (2002)CrossRefGoogle Scholar
  24. 24.
    Thiemann, R.: The DP framework for proving termination of term rewriting. Ph.D. thesis, RWTH Aachen. Available as technical report AIB-2007-17 (2007)Google Scholar
  25. 25.
    Waldmann, J.: Matchbox: a tool for match-bounded string rewriting. In: Proc. 15th International Conference on Rewriting Techniques and Applications. LNCS, vol. 3091, pp. 85–94 (2004)Google Scholar
  26. 26.
    Zankl, H., Middeldorp, A.: Increasing interpretations. In: Proc. 9th International Conference on Artificial Intelligence and Symbolic Computation. LNCS (LNAI), vol. 5144, pp. 191–204 (2008)Google Scholar
  27. 27.
    Zantema, H.: Termination. In: Terese (ed.) Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003)Google Scholar
  28. 28.
    Zantema, H.: Reducing right-hand sides for termination. In: Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday. LNCS, vol. 3838, pp. 173–197 (2005)Google Scholar
  29. 29.
    Zantema, H., Waldmann, J.: Termination by quasi-periodic interpretations. In: Proc. 18th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4533, pp. 404–418 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations