Distributed boundary coverage with a team of networked miniature robots using a robust market-based algorithm

  • Patrick Amstutz
  • Nikolaus CorrellEmail author
  • Alcherio Martinoli


We study distributed boundary coverage of known environments using a team of miniature robots. Distributed boundary coverage is an instance of the multi-robot task-allocation problem and has applications in inspection, cleaning, and painting among others. The proposed algorithm is robust to sensor and actuator noise, failure of individual robots, and communication loss. We use a market-based algorithm with known lower bounds on the performance to allocate the environmental objects of interest among the team of robots. The coverage time for systems subject to sensor and actuator noise is significantly shortended by on-line task re-allocation. The complexity and convergence properties of the algorithm are formally analyzed. The system performance is systematically analyzed at two different microscopic modeling levels, using agent-based, discrete-event and module-based, realistic simulators. Finally, results obtained in simulation are validated using a team of Alice miniature robots involved in a distributed inspection case study.


Multi-robot systems Miniature robots Boundary coverage Distributed coverage Networked robots Market-based algorithms 

Mathematics Subject Classifications (2000)

68T40 68W15 93C65 68T37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acar, E., Choset, H., Zhang, Y., Schervish, M.: Path planning for robotic demining: robust sensor-based coverage of unstructured environments and probabilistic methods. Int. J. Rob. Res. 22(7–8), 441–466 (2003)CrossRefGoogle Scholar
  2. 2.
    Bafna, V., Kalyanasundaram, B., Pruhs, K.: Not all insertion methods yield constant approximate tours in the Euclidean plane. Theor. Comput. Sci. 125(2), 345–353 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1957–1962. IEEE, Piscataway (2003)Google Scholar
  4. 4.
    Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3295–3300. Edmonton, Alberta, Canada, August 2005Google Scholar
  5. 5.
    Correll, N.: Coordination schemes for distributed boundary coverage with a swarm of miniature robots: synthesis, analysis and experimental validation. PhD thesis, Number 3919, École Polytechnique Fédérale Lausanne (2007)Google Scholar
  6. 6.
    Correll, N., Martinoli, A.: Robust distributed coverage using a swarm of miniature robots. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 379–384, Rome, April 2007Google Scholar
  7. 7.
    Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms: a case study in boundary coverage of regular structures. In: Proc. of the Int. Symp. on Experimental Robotics (ISER), Springer Tracts on Advanced Robotics, vol. 39, pp. 471–480. Rio de Janeiro, July 2006 (2008)Google Scholar
  8. 8.
    Correll, N., Sempo, G., Lopez de Meneses, Y., Halloy, J., Deneubourg, J.-L., Martinoli, A.: SwisTrack: a tracking tool for multi-unit robotic and biological research. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2185–2191, Beijing, October 2006Google Scholar
  9. 9.
    Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006) (Special Issue on Multi-Robot Systems)CrossRefGoogle Scholar
  10. 10.
    Dias, M.B., Stentz, A.: A free market architecture for distributed control of a multi-robot system. In: Proceedings of the Sixth Int. Conf. on Intelligent Autonomous Systems, pp. 115–122, Venice, July 2000Google Scholar
  11. 11.
    Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 727–734, Barcelona, April 2005Google Scholar
  12. 12.
    Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper. Res. Lett. 32, 309–315 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178–193 (1978)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 31(1–4), 77–98 (2001)CrossRefGoogle Scholar
  15. 15.
    Gerkey, B., Matarić, M.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Rob. Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  16. 16.
    Gerkey, B.P., Mataric, M.J.: Sold!: auction methods for multi-robot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002) (Special Issue on Multi-robot Systems)CrossRefGoogle Scholar
  17. 17.
    Hazon, N., Mieli, F., Kaminka, G.: Towards robust on-line multi-robot coverage. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1710–1715, Orlando, May 2006Google Scholar
  18. 18.
    Jäger, M., Nebel, B.: Dynamic decentralized area partitioning for cooperating cleaning robots. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3577–3582. IEEE, Washington, DC (2002)Google Scholar
  19. 19.
    Kalra, N., Ferguson, D., Stentz, A.: Hoplites: a market-based framework for planned tight coordination in multirobot teams. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1170–1177, Barcelona, April 2005Google Scholar
  20. 20.
    Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P., Koenig, S., Kleywegt, A., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Robotics: Science and Systems. MIT, Cambridge (2005)Google Scholar
  21. 21.
    Lerman, K., Jones, C., Galstyan, A., Matarić, M.: Analysis of dynamic task allocation in multi-robot systems. Int. J. Rob. Res. 25(4), 225–242 (2006)CrossRefGoogle Scholar
  22. 22.
    Lerman, K., Martinoli, A., Galystan, A.: A review of probabilistic macroscopic models for swarm robotic systems. In: Proc. of the SAB 2004 Workshop on Swarm Robotics, Santa Monica, CA, USA. Lecture Notes in Computer Science, vol. 3342, pp. 143–152. Springer, Berlin (2005)Google Scholar
  23. 23.
    Martinoli, A., Easton, K., Agassounon, W.: Modeling of swarm robotic systems: a case study in collaborative distributed manipulation. Int. J. Rob. Res. 23(4), 415–436 (2004)CrossRefGoogle Scholar
  24. 24.
    Michel, O.: Webots: professional mobile robot simulation. J. Adv. Robot. Syst. 1(1), 39–42 (2004)Google Scholar
  25. 25.
    Rekleitis, I., New, A., Choset, H.: Distributed coverage of unknown/unstructured environments by mobile sensor networks. In: Schultz, A.C., Parker, L.E., Schneider, F. (eds.) 3rd International NRL Workshop on Multi-Robot Systems, pp. 145–155. Kluwer, Washington, DC (2005)Google Scholar
  26. 26.
    Rutishauser, S., Correll, N., Martinoli, A.: Collaborative coverage using a swarm of networked miniature robots. Robot. Auton. Syst. (2009). doi: 10.1016/j.robot.2008.10.023. Available online 24 November 2008zbMATHGoogle Scholar
  27. 27.
    Tovey, C., Lagoudakis, M., Jain, S., Koenig, S.: The generation of bidding rules for auction-based robot coordination. In: Multi-Robot Systems: from Swarms to Intelligent Automata, vol. 3, pp. 3–14. Springer, New York (2005)CrossRefGoogle Scholar
  28. 28.
    Williams, K., Burdick, J.: Multi-robot boundary coverage with plan revision. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1716–1723. IEEE, Orlando (2006)Google Scholar
  29. 29.
    Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3852–3857, Edmonton, August 2005Google Scholar
  30. 30.
    Zlot, R., Stentz, A.: Market-based multirobot coordination for complex tasks. Int. J. Rob. Res. 25(1), 73–102 (2006) (Special Issue on the 5th International Conference on Field and Service Robotics)CrossRefGoogle Scholar
  31. 31.
    Zlot, R., Stentz, A., Dias, M., Thayer, S.: Multi-robot exploration controlled by a market economy. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3016–3023. IEEE, Washington, DC (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Patrick Amstutz
    • 1
  • Nikolaus Correll
    • 2
    Email author
  • Alcherio Martinoli
    • 1
  1. 1.Distributed Intelligent Systems and Algorithms LaboratoryÉcole Polytechnique Fédérale LausanneLausanneSwitzerland
  2. 2.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations