Advertisement

Hyperequivalence of logic programs with respect to supported models

  • Mirosław Truszczyński
  • Stefan Woltran
Article

Abstract

Recent research in nonmonotonic logic programming has focused on certain types of program equivalence, which we refer to here as hyperequivalence, that are relevant for program optimization and modular programming. So far, most results concern hyperequivalence relative to the stable-model semantics. However, other semantics for logic programs are also of interest, especially the semantics of supported models which, when properly generalized, is closely related to the autoepistemic logic of Moore. In this paper, we consider a family of hyperequivalence relations for programs based on the semantics of supported and supported minimal models. We characterize these relations in model-theoretic terms. We use the characterizations to derive complexity results concerning testing whether two programs are hyperequivalent relative to supported and supported minimal models.

Keywords

Hyperequivalence Logic programs Supported models 

Mathematics Subject Classifications (2000)

68N17 68T30 68Q17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.: Logic programming. In: van Leeuven, J. (ed.) Handbook of Theoretical Computer Science, pp. 493–574. Elsevier, Amsterdam (1990)Google Scholar
  2. 2.
    Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial evaluation. J. Log. Program. 32(3), 207–228 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: Analysing and extending well-founded and partial stable semantics using partial equilibrium logic. In: Etalle, S., Truszczynski, M. (eds.) Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006), LNCS, vol. 4079, pp. 346–360. Springer, Berlin (2006)Google Scholar
  4. 4.
    Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum, New York (1978)Google Scholar
  5. 5.
    de Jongh, D., Hendriks, L.: Characterizations of strongly equivalent logic programs in intermediate logics. Theory Pract. Log. Program. 3(3), 259–270 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eiter, T., Gottlob, G.: Reasoning with arsimonious and moderately grounded expansions. Fundam. Inform. 17(1–2), 31–53 (1992)MATHMathSciNetGoogle Scholar
  7. 7.
    Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR’06), pp. 340–351. AAAI, CA (2006)Google Scholar
  8. 8.
    Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences in answer set programming. ACM Trans. Comput. Log. 8(3), 53 (2007)MathSciNetGoogle Scholar
  9. 9.
    Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 97–102. Morgan Kaufmann, San Francisco (2005)Google Scholar
  10. 10.
    Fages, F.: Consistency of Clark’s completion and existence of stable models. J. Meth. Logic Comput. Sci. 1, 51–60 (1994)Google Scholar
  11. 11.
    Ferraris, P.: On modular translations and strong equivalence. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005), LNCS, vol. 3552, pp. 79–91. Springer, New York (2005)Google Scholar
  12. 12.
    Gebser, M. Schaub, T., Tompits, H., Woltran, S.: Alternative characterizations for program equivalence under answer-set semantics based on unfounded sets. In: Hartmann, S., Kern-Isberner, G. (eds.) Foundations of Information and Knowledge Systems, 5th International Symposium, FoIKS 2008, Proceedings, LNCS, vol. 4932, pp. 24–41. Springer, New York (2008)Google Scholar
  13. 13.
    Inoue, K., Sakama, C.: Negation as failure in the head. J. Log. Program. 35, 39–78 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA 2004), LNCS, vol. 3229, pp. 174–186. Springer, New York (2004)Google Scholar
  15. 15.
    Kaminski, M.: Embedding a default system into nonmonotonic logic. Fundam. Inform. 14(3), 345–353 (1991)MATHMathSciNetGoogle Scholar
  16. 16.
    Konolige, K.: On the relation between default and autoepistemic logic. Artif. Intell. 35(3), 343–382 (1988)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Konolige, K.: Errata: on the relation between default and autoepistemic logic. Artif. Intell. 41(1), 115 (1989)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) Proceedings of the 19th International Conference on Logic Programming (ICLP 2003), LNCS, vol. 2916, pp. 451–465. Springer, New York (2003)Google Scholar
  19. 19.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541. (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25(3–4), 369–389 (1999)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. J. Artif. Intell. Res. 28, 431–451 (2007)MathSciNetMATHGoogle Scholar
  22. 22.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 112–117. AAAI, CA (2002)Google Scholar
  23. 23.
    Lin, F.: Reducing strong equivalence of logic programs to entailment in classical propositional logic. In: Fensel, D., McGuinness, D., Williams, M. (eds.) Proceedings of the 8th International Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 170–176. Morgan Kaufmann, San Francisco (2002)Google Scholar
  24. 24.
    Maher, M.: Equivalences of logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 627–658. Morgan Kaufmann, San Francisco (1988)Google Scholar
  25. 25.
    Marek, W., Truszczyński, M.: Nonmonotonic Logic; Context-Dependent Reasoning. Springer, Berlin (1993)MATHGoogle Scholar
  26. 26.
    Moore, R.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25(1), 75–94 (1985)MATHCrossRefGoogle Scholar
  27. 27.
    Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored: relativised uniform equivalence with answer-set projection. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), pp. 458–464. AAAI, CA (2007)Google Scholar
  28. 28.
    Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), pp. 412–416. IOS, Amsterdam (2006)Google Scholar
  29. 29.
    Sagiv, Y.: Optimising DATALOG programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 659–698. Morgan Kaufmann, San Francisco (1988)Google Scholar
  30. 30.
    Truszczyński, M., Woltran, S.: Relativized hyperequivalence of logic programs for modular programming. In: Proceedings of the 24th International Conference on Logic Programming (ICLP 2008), LNCS, vol. 5366, pp. 576–590. Springer, New York (2008)Google Scholar
  31. 31.
    Truszczyński, M.: Modal nonmonotonic logic with restricted application of the negation as failure to prove rule. Fundam. Inform. 14(3), 355–366 (1991)MATHGoogle Scholar
  32. 32.
    Truszczynski, M.: Strong and uniform equivalence of nonmonotonic theories—an algebraic approach. Ann. Math. Artif. Intell. 48(3–4), 245–265 (2006)MATHMathSciNetGoogle Scholar
  33. 33.
    Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory Pract. Log. Program. 3(4–5), 609–622 (2003)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)MATHCrossRefGoogle Scholar
  35. 35.
    Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-set programming. Theory Pract. Log. Program. 8(2), 217–234 (2008)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Wong, K.: Sound and complete inference rules for SE-consequence. J. Artif. Intell. Res. 31, 205–216 (2008)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of KentuckyLexingtonUSA
  2. 2.Institut für Informationssysteme 184/2Technische Universität WienViennaAustria

Personalised recommendations