Integrating answer set programming and constraint logic programming

  • Veena S. Mellarkod
  • Michael Gelfond
  • Yuanlin Zhang


We introduce a knowledge representation language \({\cal AC(C)}\) extending the syntax and semantics of ASP and CR-Prolog, give some examples of its use, and present an algorithm, \(\mathcal{AC}\!solver\), for computing answer sets of \({\cal AC(C)}\) programs. The algorithm does not require full grounding of a program and combines “classical” ASP solving methods with constraint logic programming techniques and CR-Prolog based abduction. The \({\cal AC(C)}\) based approach often allows to solve problems which are impossible to solve by more traditional ASP solving techniques. We believe that further investigation of the language and development of more efficient and reliable solvers for its programs can help to substantially expand the domain of applicability of the answer set programming paradigm.


Knowledge representation and reasoning Answer set programming Constraint logic programming 

Mathematics Subject Classifications (2000)

68T27 68T30 68T35 68T20 03B70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K., Bezem, M.: Acyclic programs. New Gener. Comput. 9(3,4), 335–365 (1991)CrossRefGoogle Scholar
  2. 2.
    Babovich, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight programs. In: International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR-05, January (2004)Google Scholar
  3. 3.
    Balduccini, M.: USA-Smart: improving the quality of plans in answer set planning. In: PADL’04, Lecture Notes in Artificial Intelligence (LNCS), June (2004)Google Scholar
  4. 4.
    Balduccini, M.: CR-MODELS: an inference engine for CR-Prolog. In: Baral, C., Brewka, G., Schlipf, J. (eds.) Proceedings of the 9th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR’07). Lecture Notes in Artificial Intelligence, vol. 3662, pp. 18–30. Springer, Berlin (2007)Google Scholar
  5. 5.
    Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Doherty, P., McCarthy, J., Williams, M.-A. (eds.) International Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium Series, pp. 9–18, March (2003)Google Scholar
  6. 6.
    Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge systems. Ann. Math. Artif. Intell. 47, 183–219 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Baral, C.: Knowledge representation, reasoning, and declarative problem solving. Cambridge University Press, Cambridge (January 2003)MATHGoogle Scholar
  8. 8.
    Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about cell signalling networks. In: Proceedings of European Conference on Computational Biology, Supplement on Bioinformatics, pp. 15–22 (2004)Google Scholar
  9. 9.
    Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and constraint solving. In: Proceedings of ICLP-05, pp. 52–66 (2005)Google Scholar
  10. 10.
    Brooks, D. R., Erdem, E., Minett, J. W., Ringe, D.: Character-based cladistics and answer set programming. In: Proceedings of International Symposium on Practical Aspects of Declarative Languages, pp. 37–51 (2005)Google Scholar
  11. 11.
    Buccafurri, F., Leone, N., Rullo, P.: Adding weak constraints to disjunctive datalog. In: Proceedings of the 1997 Joint Conference on Declarative Programming APPIA-GULP-PRODE’97 (1997)Google Scholar
  12. 12.
    Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries under the well-founded semantics. J. Log. Program. 24(3), 161–201 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum, New York (1978)Google Scholar
  14. 14.
    Dovier, A., Formisano, A., Pontelli, E.: An experimental comparison of constraint logic programming and answer set programming. In: Proceedings of AAAI07, pp. 1622–1625 (2007)Google Scholar
  15. 15.
    Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for nonmonotonic reasoning. In: International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR97, LNAI, vol. 1265, pp. 363–374. Springer, Berlin (1997)Google Scholar
  16. 16.
    Elkabani, I., Pontelli, E., Son, T.C.: Smodelsa—a system for computing answer sets of logic programs with aggregates. In: LPNMR, pp. 427–431 (2005)Google Scholar
  17. 17.
    Gebser, M., Kaufman, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07). lnai, vol. 3662, pp. 136–148. Springer, Berlin (2007)CrossRefGoogle Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP-88, pp. 1070–1080 (1988)Google Scholar
  19. 19.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  20. 20.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. J. Autom. Reason. 36, 345–377 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and system. ACM Trans. Program. Lang. Syst. 14(3), 339–395 (1992)CrossRefGoogle Scholar
  22. 22.
    Jaffar, J., Maher, M.J.: Constraint logic programming. J. Log. Program. 19/20, 503–581 (1994)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 499–562 (2006)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the Eleventh International Conference on Logic Programming, pp. 23–37. MIT Press, Cambridge, MA, USA (1994)Google Scholar
  25. 25.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract constraint atoms: the role of computations. In: Proceedings of ICLP-07, pp. 286–301 (2007)Google Scholar
  27. 27.
    Marek, V.W., Truszczynski, M.: Nonmonotonic Logics; Context Dependent Reasoning. Springer, Berlin (1993)Google Scholar
  28. 28.
    Marek, V.W., Truszczynski, M.: Stable Models and an Alternative Logic Programming Paradigm, pp. 375–398. The Logic Programming Paradigm: a 25-Year Perspective. Springer, Berlin (1999)Google Scholar
  29. 29.
    Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms. In: Proceedings of AAAI04, pp. 86–91 (2004)Google Scholar
  30. 30.
    Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT, Cambridge, MA (1998)MATHGoogle Scholar
  31. 31.
    Mellarkod, V.S.: Integrating ASP and CLP systems: computing answer sets from partially ground programs. Ph.D. thesis, Texas Tech University December (2007)Google Scholar
  32. 32.
    Mellarkod, V.S., Gelfond, M.: Enhancing asp systems for planning with temporal constraints. In: LPNMR 2007, pp. 309–314, May (2007)Google Scholar
  33. 33.
    Niemela, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Niemela, I., Simons, P.: Smodels—an implementation of the stable model and well-founded semantics for normal logic programs. In: Proceedings of the 4th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR’97). Lecture Notes in Artificial Intelligence (LNCS), vol. 1265, pp. 420–429 (1997)Google Scholar
  35. 35.
    Niemela, I., Simons, P., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–2340 June (2002)MathSciNetGoogle Scholar
  36. 36.
    Ramalingam, G., Song, J., Joskowicz, L., Miller, R.E.: Solving systems of difference constraints incrementally. Algorithmica 23(3), 261–275 (1999)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    SICStus Prolog. SICStus Prolog User’s Manual Version 4. (2007)
  38. 38.
    Simons, P.: Extending and implementing the stable model semantics. Research Report A58, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland. Doctoral dissertation April (2000)Google Scholar
  39. 39.
    Soininen, T., Niemella, I.: Developing a declarative rule language for applications in product configuration. In: Proceedings of International Symposium on Practical Aspects of Declarative Languages, pp. 305–319 (1998)Google Scholar
  40. 40.
    Stuckey, P.J.: Constructive negation for constraint logic programming. In: LICS, pp. 328–339 (1991)Google Scholar
  41. 41.
    Syrjanen, T.: Implementation of logical grounding for logic programs with stable model semantics. Technical Report 18, Digital Systems Laboratory, Helsinki University of Technology (1998)Google Scholar
  42. 42.
    Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT, Cambridge, MA (1989)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Veena S. Mellarkod
    • 1
  • Michael Gelfond
    • 1
  • Yuanlin Zhang
    • 1
  1. 1.Texas Tech UniversityLubbockUSA

Personalised recommendations