Advertisement

Exploiting conjunctive queries in description logic programs

  • Thomas Eiter
  • Giovambattista Ianni
  • Thomas Krennwallner
  • Roman Schindlauer
Article

Abstract

Towards combining rules and ontologies for the Semantic Web, nonmonotonic Description Logic Programs (dl-programs) have been proposed as a powerful formalism to couple nonmonotonic logic programming and Description Logic reasoning on a clear semantic basis. In this paper, we present cq-programs, which enhance dl-programs with conjunctive queries (CQ) and union of conjunctive queries (UCQ) over Description Logics knowledge bases, as well as with disjunctive rules. The novel formalism has two advantages. First, it offers increased expressivity because it allows for (U)CQs in the bodies of the rules. The (U)CQs allow one to access unnamed individuals in the rules and they increase the expressivity of the formalism, as evident from the increase in complexity from NEXP to 2-EXP. And second, when implemented as a combination between a logic programming system and a DL-reasoner, this integration of rules and ontologies gives rise to strategies for optimizing calls to the DL-reasoner, by exploiting specific support for (U)CQs. To this end, we present equivalence preserving transformations which can be used for program rewriting, and we present respective generic rewriting algorithms. Experimental results for a cq-program prototype show that this can lead to significant performance improvements, and suggest that cq-programs and program rewriting provide a useful basis for dl- and cq-program optimization.

Keywords

Hybrid rule languages Conjunctive queries and description logics Answer set programming Semantic web 

Mathematics Subject Classifications (2000)

68T27 68T30 68T35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Patel-Schneider, P.F.: Combining rules and ontologies: a survey. Tech. Rep. IST506779/Linköping/I3-D3/D/PU/a1, Linköping University, Feb. (2005)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics: an automata-theoretic approach. In: AAAI, pp. 391–396. AAAI, Menlo Park (2007)Google Scholar
  4. 4.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  5. 5.
    de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about combinations of classical theories with nonmonotonic rules. In: Proceedings KSEM-2006. LNCS/LNAI, vol. 4092, pp. 1–22. Springer, New York (2006)Google Scholar
  6. 6.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and hybrid rules. In: Proceedings First International Conference on Web Reasoning and Rule Systems (RR2007), Innsbruck, 2007. LNCS, vol. 4524, pp. 58–72. Springer, New York (2007)Google Scholar
  7. 7.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12–13), 1495–1539 (2008)Google Scholar
  8. 8.
    Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web, Second International Summer School 2006, Lissabon, Portugal, 25–29 September 2006, Tutorial Lectures, number 4126 in LNCS, pp. 93–127. Springer, New York (2006)Google Scholar
  9. 9.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: Proceedings IJCAI-2005, pp. 90–96. Professional Book Center, Denver (2005)Google Scholar
  10. 10.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proceedings Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), June 2–5, Whistler, British Columbia, Canada, pp. 141–151. Morgan Kaufmann, San Francisco (2004)Google Scholar
  11. 11.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for description logic programs in the semantic web. In: Proceedings RuleML-2004. LNCS, vol. 3323, pp. 81–97. Springer, New York (2004)Google Scholar
  12. 12.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Proceedings JELIA-2004. LNCS/LNAI, vol. 3229, pp. 200–212. Springer, New York (2004)Google Scholar
  13. 13.
    Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the description logic SHIQ. J. Artif. Intell. Res. 31, 157–204 (2008)MathSciNetGoogle Scholar
  14. 14.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic \(\mathcal{SHIQ}\). In: Veloso, M. (ed.) Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 399–404. AAAI/IJCAI, Menlo Park (2007)Google Scholar
  15. 15.
    Haarslev, V., Möller, R.: RACER system description. In: Proceedings IJCAR-2001. LNCS/LNAI, vol. 2083, pp. 701–705. Springer, New York (2001)Google Scholar
  16. 16.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. J. Web Semantics 1(4), 345–357 (2004)Google Scholar
  17. 17.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Proceedings LPAR-1999. LNCS/LNAI, vol. 1705, pp. 161–180. Springer, New York (1999)Google Scholar
  18. 18.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: the making of a web ontology language. J. Web Semantics 1(1), 7–26 (2003)Google Scholar
  19. 19.
    Krennwallner, T.: Integration of conjunctive queries over description logics into HEX-programs. Master’s thesis, Vienna University of Technology, Karlsplatz 13, A-1040 Wien, October (2007)Google Scholar
  20. 20.
    Lukasiewicz, T.: A novel combination of answer set programming with description logics for the semantic web. In: Proceedings ESWC-2007. LNCS, vol. 4519, pp. 384–398. Springer, New York (2007)Google Scholar
  21. 21.
    Lutz, C.: Inverse roles make conjunctive queries hard. In: Proceedings of the 2007 International Workshop on Description Logics (DL2007), Bressanone, 2007, number 250 in CEUR Workshop Proceedings, http://ceur-ws.org/, pp. 100–111 (2007)
  22. 22.
    Marek, V., Niemelä, I., Truszczyśki, M.: Logic programs with monotone cardinality atoms. In: Proceedings LPNMR-2004, LNCS, vol. 2923, pp. 154–166 (2004)Google Scholar
  23. 23.
    Marek, W., Remmel, J.: On the expressibility of stable logic programming. Theory Pract. Log. Program. 3(4–5), 551–567 (2003)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Marek, W., Truszczyński, M.: Autoepistemic Logic. J. ACM 38(3), 588–619 (1991)MATHCrossRefGoogle Scholar
  25. 25.
    Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live together happily ever after? In: Proceedings ISWC-2006, LNCS, vol. 4273, pp. 501–514. Springer, New York (2006)Google Scholar
  26. 26.
    Motik, B., Rosati, R.: A faithful integration of description logics with logic programming. In: Veloso, M. (ed.) Proceedings 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 477–482. AAAI/IJCAI, Menlo Park (2007)Google Scholar
  27. 27.
    Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large description logic aboxes. In: Hermann, M., Voronkov, A. (eds.), LPAR, of Lecture Notes in Computer Science, vol. 4246, pp. 227–241. Springer, New York (2006)Google Scholar
  28. 28.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Semantics 3(1), 41–60 (2005)Google Scholar
  29. 29.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.), Handbook of Automated Reasoning, vol. I, chapter 6, pp. 335–367. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  30. 30.
    Ortiz de la Fuente, M., Calvanese, D., Eiter, T.: Data complexity of answering unions of conjunctive queries in SHIQ. In: Parsi, B., Sattler, U., Toman, D. (eds.) Proceedings of the 2006 International Workshop on Description Logics (DL2006), The Lake District of the UK, May 30 – June 1, 2006, CEUR Workshop Proceedings, vol. 189, pp. 62–73. http://CEUR-WS.org/Vol-189 (2006).
  31. 31.
    Ortiz de la Fuente, M., Calvanese, D., Eiter, T., Franconi, E.: Characterizing data complexity for conjunctive query answering in expressive description logics. In: Proceedings AAAI-2006. AAAI, Menlo Park (2006)Google Scholar
  32. 32.
    Ortiz de la Fuente, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive description logics via tableaux. Technical Report INFSYS RR-1843-07-07, Institut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria, November (2007) (Accepted for publication in J. Autom. Reason.)Google Scholar
  33. 33.
    Pan, J.Z., Franconi, E., Tessaris, S., Stamou, G., Tzouvaras, V., Serafini, L., Horrocks, I., Glimm, B.: Specification of coordination of rule and ontology languages. Project Deliverable D2.5.1, KnowledgeWeb NoE, June (2004)Google Scholar
  34. 34.
    Rosati, R.: Integrating ontologies and rules: semantic and computational issues. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U., (eds.) Reasoning Web. LNCS, vol. 4126, pp. 128–151. Springer, New York (2006)CrossRefGoogle Scholar
  35. 35.
    Rosati, R.: \({\ensuremath{\mathcal{DL}{+}\mathit{log}}\,}\): tight integration of description logics and disjunctive datalog. In: Proceedings 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 68–78. AAAI, Menlo Park (2006)Google Scholar
  36. 36.
    Rosati, R.: The limits of querying ontologies. In: Proc. ICDT 2007. LNCS, vol. 4353, pp. 164–178. Springer, New York (2007)Google Scholar
  37. 37.
    Sakama, C., Seki, H.: Partial deduction in disjunctive logic programming. J. Log. Program. 32(3), 229–245 (1997)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Schindlauer, R.: Answer-Set Programming for the Semantic Web. Ph.D. thesis, Vienna University of Technology, Austria, December 2006. VDM Verlag Dr. Mueller (2008)Google Scholar
  39. 39.
    Smith, M., Welty, C., McGuinness, D.: OWL web ontology language guide. W3C Recommendation, W3C, February. http://www.w3.org/TR/owl-guide/ (2004). (The Wine ontology is available from there, or directly at http://www.w3.org/TR/owl-guide/wine.rdf)
  40. 40.
    W3C: OWL 1.1 Web ontology language overview. http://www.w3.org/Submission/owl11-overview/ (2006)

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Giovambattista Ianni
    • 2
  • Thomas Krennwallner
    • 1
  • Roman Schindlauer
    • 1
  1. 1.Institut für Informationssysteme 184/3Technische Universität WienViennaAustria
  2. 2.Dipartimento di MatematicaUniversità della CalabriaRende (CS)Italy

Personalised recommendations