Comparing action descriptions based on semantic preferences

  • Thomas Eiter
  • Esra Erdem
  • Michael Fink
  • Ján Senko


The focus of this paper is on action domain descriptions whose meaning can be represented by transition diagrams. We introduce several semantic measures to compare such action descriptions, based on preferences over possible states of the world and preferences over some given conditions (observations, assertions, etc.) about the domain, as well as the probabilities of possible transitions. This preference information is used to assemble a weight which is assigned to an action description. As applications of this approach, we study updating action descriptions and identifying elaboration tolerant action descriptions, with respect to some given conditions. With a semantic approach based on preferences, not only, for some problems, we get more plausible solutions, but also, for some problems without any solutions due to too strong conditions, we can identify which conditions to relax to obtain a solution. We further study computational issues, and give a characterization of the computational complexity of computing the semantic measures.


Action domain descriptions Semantic preferences Transition diagrams 

Mathematics Subject Classifications (2000)

68T30 68T27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelfond, M., Lifschitz, V.: Action languages. ETAI 3, 195–210 (1998)Google Scholar
  2. 2.
    Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 418–423 (2005)Google Scholar
  3. 3.
    Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action description updates. In: Proceedings Computational Logic in Multi-Agent Systems (CLIMA V). LNCS, vol. 3487, pp. 52–77. Springer (2004)Google Scholar
  4. 4.
    Herzig, A., Perrussel, L., Varzinczak, I.: Elaborating domain descriptions. In: Brewka, G., et al. (eds.) Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 397–401. IOS Press (2006)Google Scholar
  5. 5.
    McCarthy, J.: Elaboration tolerance. In: Proceedings of the Symposium on Logical Formalizations of Commonsense Reasoning (CommonSense) (1998)Google Scholar
  6. 6.
    Amir, E.: Towards a formalization of elaboration tolerance: adding and deleting axioms. In: Frontiers of Belief Revision. Kluwer (2000)Google Scholar
  7. 7.
    Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: preliminary report. In: Proceedings of the National Conference on AI (AAAI), pp. 623–630 (1998)Google Scholar
  8. 8.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn Prentice Hall (2002)Google Scholar
  9. 9.
    Eiter, T., Erdem, E., Fink, M., Senko, J.: Resolving conflicts in action descriptions. In Brewka, G., et al. (eds.) Proceedings ECAI, pp. 367–371. IOS Press (2006)Google Scholar
  10. 10.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  11. 11.
    Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. J. Comput. Syst. Sci. 48, 116–148 (1994)MATHCrossRefGoogle Scholar
  12. 12.
    Gupta, S.: Closure properties and witness reduction. J. Comput. Syst. Sci. 50, 412–432 (1995)MATHCrossRefGoogle Scholar
  13. 13.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153, 49–104 (2004)MATHCrossRefGoogle Scholar
  14. 14.
    Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83, 363–378 (1996)CrossRefGoogle Scholar
  15. 15.
    Eiter, T., Gottlob, G.: The Complexity of Logic-Based Abduction. ACM Journal 42, 3–42 (1995)MATHCrossRefGoogle Scholar
  16. 16.
    Stroe, B., Subrahmanian, V.S., Dasgupta, S.: Optimal status sets of heterogeneous agent programs. In: Dignum, F., et al. (eds.) Proceedings of the 4rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS). pp. 709–715 (2005)Google Scholar
  17. 17.
    Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159, 1–26 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 499–562 (2006)CrossRefGoogle Scholar
  19. 19.
    Syrjänen, T., Niemelä, I.: The Smodels system. In: Eiter, T., et al. (eds.): Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). LNCS, vol. 2173, pp. 434–438. Springer (2001)Google Scholar
  20. 20.
    Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satisfiability. Artif. Intell. 164, 47–80 (2005)CrossRefGoogle Scholar
  21. 21.
    Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artif. Intell. 33, 379–412 (1987)MATHCrossRefGoogle Scholar
  22. 22.
    McDermott, D.: AIPS-98 planning competition results. (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Esra Erdem
    • 2
  • Michael Fink
    • 1
  • Ján Senko
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria
  2. 2.Faculty of Engineering and Natural SciencesSabancı UniversityIstanbulTurkey

Personalised recommendations