Relational concept discovery in structured datasets

  • M. Huchard
  • M. Rouane Hacene
  • C. Roume
  • P. Valtchev


Relational datasets, i.e., datasets in which individuals are described both by their own features and by their relations to other individuals, arise from various sources such as databases, both relational and object-oriented, knowledge bases, or software models, e.g., UML class diagrams. When processing such complex datasets, it is of prime importance for an analysis tool to hold as much as possible to the initial format so that the semantics is preserved and the interpretation of the final results eased. Therefore, several attempts have been made to introduce relations into the formal concept analysis field which otherwise generated a large number of knowledge discovery methods and tools. However, the proposed approaches invariably look at relations as an intra-concept construct, typically relating two parts of the concept description, and therefore can only lead to the discovery of coarse-grained patterns. As an approach towards the discovery of finer-grain relational concepts, we propose to enhance the classical (object × attribute) data representations with a new dimension that is made out of inter-object links (e.g., spouse, friend, manager-of, etc.). Consequently, the discovered concepts are linked by relations which, like associations in conceptual data models such as the entity-relation diagrams, abstract from existing links between concept instances. The borders for the application of the relational mining task are provided by what we call a relational context family, a set of binary data tables representing individuals of various sorts (e.g., human beings, companies, vehicles, etc.) related by additional binary relations. As we impose no restrictions on the relations in the dataset, a major challenge is the processing of relational loops among data items. We present a method for constructing concepts on top of circular descriptions which is based on an iterative approximation of the final solution. The underlying construction methods are illustrated through their application to the restructuring of class hierarchies in object-oriented software engineering, which are described in UML.


Galois/concept lattices Relational data mining Lattice constructing algorithms Conceptual scaling Relational loops 

Mathematics Subject Classifications (2000)

06A15 06B99 68N30 68T05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbutm, M., Monjardet, B.: Ordre et Classification: Algèbre et combinatoire. Hachette, Paris (1970)Google Scholar
  2. 2.
    Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide. Addison-Wesley, Reading, MA (1999)Google Scholar
  3. 3.
    Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide. In: Object Technology. Addison-Wesley, Reading, MA (2000)Google Scholar
  4. 4.
    Chaudron, L., Maille, N.: First order logic formal concept analysis: from logic programming to theory. ACIS Int. J. Comput. Inf. Sci. 13(3) (1998)Google Scholar
  5. 5.
    Chen, P.: The entity-relationship model – toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)CrossRefGoogle Scholar
  6. 6.
    Dao, M.: Validation sur de grands projets, Projet MACAO (RNTL). Technical Report sous-projet MACAO 5.1, France Télécom R&D (December 2003)Google Scholar
  7. 7.
    Dao, M., Huchard, M., Libourel, T., Roume, C.: Spécification de la prise en compte plus détaillée des éléments du modèle objet UML. Technical report, Projet MACAO. Réseau RNTL (2001)Google Scholar
  8. 8.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge, UK (1992)Google Scholar
  9. 9.
    Dicky, H., Dony, C., Huchard, M., Libourel, T.: On automatic class insertion with overloading. In: Special issue of Sigplan Notice – Proceedings of ACM OOPSLA’96, pp. 251–267 (1996)Google Scholar
  10. 10.
    Diday, E., Emillion, R.: Treillis de Galois maximaux et capacités de Choquet. C. R. Acad. Sci. Paris 325(1), 261–266 (1997)MATHGoogle Scholar
  11. 11.
    Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Berlin Heidelberg New York (2001)Google Scholar
  12. 12.
    Faid, M., Missaoui, R., Godin, R.: Knowledge discovery in complex objects. Comput. Intell. 15(1), 28–49 (1999)CrossRefGoogle Scholar
  13. 13.
    Ganter, B., Wille, R.: Applications of combinatorics and graph theory to the biological and social sciences. In: The IMA volumes in Mathematics and its applications, chapter Conceptual Scaling, vol. 17, pp. 139–167. Springer, New York (1989)Google Scholar
  14. 14.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin Heidelberg New York (1999)MATHGoogle Scholar
  15. 15.
    Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using Galois lattices. In: Proceedings of OOPSLA’93, Washington (DC), USA, pp. 394–410 (1993)Google Scholar
  16. 16.
    Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.T.:Design of class hierarchies based on concept (Galois) lattices. Theory Pract. Object Syst. 4(2), 117–134 (1998)CrossRefGoogle Scholar
  17. 17.
    Polaillon, G., Diday, E.: Symbolic galois lattices of multivariate and interval tables. In: Proceedings of the International Conference on Ordinal and Symbolic Data Analysis (OSDA 97), Darmstadt (1997)Google Scholar
  18. 18.
    Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify algorithms building class hierarchies. Inform. Theor. Appl. 34, 521–548 (2000)MATHCrossRefGoogle Scholar
  19. 19.
    Kent, R.: Rough concept analysis: a synthesis of rough sets and formal concept analysis. Fundam. Inform. 27, 169–181 (1996)MATHGoogle Scholar
  20. 20.
    Kuznetsov, S.: Learning of simple conceptual graphs from positive and negative examples. In: Zytkow, J., Rauch, J. (eds.) Proceedings of the Third European Conference PKDD’99, Prague, Czech Republic, vol. 1704, pp. 384–391 (1999)Google Scholar
  21. 21.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)MATHCrossRefGoogle Scholar
  22. 22.
    Liquiere, M., Sallantin, J.: Structural machine learning with Galois lattice and graphs. In: Proceedings of the 15th International Conference on Machine Learning, pp. 305–313 (1998)Google Scholar
  23. 23.
    Mineau, G.W., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W.M., Cyre, W. (eds.) Conceptual structures: Standards and Practices, vol. 1640, pp. 423–441 (1999)Google Scholar
  24. 24.
    Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)CrossRefGoogle Scholar
  25. 25.
    Rational Software Corporation: UML v 1.3, Notation Guide, version 1.3 edition (1999)Google Scholar
  26. 26.
    Rayside, D., Campbell, G.T.: An aristotelian understanding of object-oriented programming. In: Doug Lea (ed.) Proceedings of OOPSLA’00, Minneapolis, MN, USA, pp. 337–353 (October 2000)Google Scholar
  27. 27.
    Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object Oriented Modeling and Design. Prentice-Hall, Englewoods Cliff, NJ (1991)Google Scholar
  28. 28.
    Snelting, G., Tip, F.: Reengineering class hierarchies using concept analysis. In: Proceedings of ACM SIGPLAN/SIGSOFT Symposium on Foundations of Software Engineering, Orlando, FL, pp. 99–110(1998)Google Scholar
  29. 29.
    Valtchev, P.: Building classes in object-based languages by automatic clustering. In: Hand, D., Kok, J., Berthold, M. (eds.) Proceedings of the 3rd International Symposium on Intelligent Data Analysis, vol. 1642, pp. 303–314 (1999)Google Scholar
  30. 30.
    Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: Galicia: an open platform for lattices. In: de Moor, A., Ganter, B. (eds.) Using Conceptual Structures: Contributions to 11th Intl. Conference on Conceptual Structures (ICCS’03), pp. 241–254. Shaker, Aachen, Germany (2003)Google Scholar
  31. 31.
    Valtchev, P., Hacene, R.M., Huchard, M., Roume, C.: Extracting formal concepts out of relational data. In: SanJuan, E., Berry, A., Sigayret, A., Napoli, A. (eds.) Proceedings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM’03): Knowledge Discovery and Discrete Mathematics, Metz (FR), 3–6 September, pp. 37–49. INRIA (2003)Google Scholar
  32. 32.
    Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Math. 256(3), 801–829 (2002)MATHCrossRefGoogle Scholar
  33. 33.
    Vogt, F., Wille, R.: TOSCANA – a graphical tool for analyzing and exploring data. In: Tamassia, R., Tollis, I.G. (eds.) Graph Drawing, vol. 894, pp. 226–233 (1994)Google Scholar
  34. 34.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  35. 35.
    Wille, R.: Conceptual structures of multicontexts. In: Eklund, P.W., Ellis, G., Mann, G. (eds.) Proceedings of the 4th ICCS 1996, Sidney (AU), vol. 1115, pp. 23–39 (1996)Google Scholar
  36. 36.
    Yahia, A., Lakhal, L., Cicchetti, R., Bordat, J.P.: iO2 – An algorithmic method for building inheritance graphs in object database design. In: Proceedings of the 15th International Conference on Conceptual Modeling ER’96, vol. 1157, pp. 422–437 (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Huchard
    • 1
  • M. Rouane Hacene
    • 2
  • C. Roume
    • 2
  • P. Valtchev
    • 2
  1. 1.LIRMM, UMR 5506CNRS et Université Montpellier 2Montpellier Cedex 5France
  2. 2.DIROUniversité de MontréalMontréalCanada

Personalised recommendations